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1 Introduction

Nowadays we are surrounded by assorted large information networks. For ex-
ample, the phone network has all users as vertices which are interconnected
by phone calls from one user to another. The Web can be viewed as a net-
work with webpages as vertices which are then linked to other webpages. There
are various biological networks arising from numerous databases, such as the
gene network which represents the regulatory effect among genes. Of interest
are many social networks expressing various types of social interactions. Some
noted examples include the Collaboration graph (denoting coauthorship among
mathematicians) and the Hollywood graph (consisting of actors/actresses and
their joint appearances in feature films), among others.

How are these networks formed? What are basic structures of such large
networks? How do they evolve? What are the underlying principles that dictate
their behaviors?

To answer these questions, graph theory comes into play. Random graphs
have a similar flavor as these large information networks in a natural way. For
example, the phone network is formed by making random phone calls while a
random graph results from adding a random edge one at a time. Although the
classical random graphs can not directly be used to model real networks and
seem to exhibit different ‘shapes’, the methods and approaches in random graph
theory provides useful tools for the modeling and analysis of these information
networks.

In this article, we will start with some basic graph theory in Section 2.
We then introduce the main themes of random graphs in Section 3. Then we
consider the classical random graph theory in Section 4 before we proceed to
describe some general random graph models with given degree distributions, in
particular, the power law graphs in Section 5. In Section 6, we will cover two
types of “on-line” graph models, including the model of preferential attachment
and the duplication model.

Although random graphs can be used to analyze various aspects of realistic
networks, we wish to point out that there is no silver bullet to answer all the
difficult problems about these large complex networks. In the last section we
will put things in perspective by clarifying what random graphs can and can
not do.

2 Some basic graph theory

All the information networks that we have mentioned can be formulated in terms
of graphs. A graph G consists of a vertex set, denoted by V = V (G) (which
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contains all the objects that we wish to deal with) and an edge set E = E(G)
which consists of of specified pairwise relations between vertices. For example, a
friendship graph has the vertex set consisting of people of interest and the edge
set denoting the pairs of people who are friends. In Table 1 we list a number of
graphs associated with various networks.

Graph Vertices Edges
Flight schedule graph cities flights

Phone graph telephone numbers phone calls
Collaboration graph authors in Math Review coauthorship

Web graph Webpages links
Biological graph genes regulatory effects

Table 1: Graph models for several networks.

As an introduction to graph theory, we describe the so-called party problem:

Among six people in a party, show that there are at least three people
who know each other or there are three people who do not know each
other.

This can be said in graph-theoretical terms:

Any graph on 6 vertices must contain a triangle or contain three
independent vertices with no edge among them.

Indeed, 6 is the smallest number for this to occur since there is a graph on 5
vertices that contain neither a triangle nor three independent vertices. Such a
graph is a cycle on 5 vertices, denoted by C5, as seen in Figure 1.

Figure 1: A five cycle C5 and a complete graph K5.

Let Kn denote a complete graph on n vertices which has all
(
n
2

)
edges. For

example, a triangle is K3 which turns out is also C3. The above party problem is
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a toy case of the so-called Ramsey theory which deals with unavoidable patterns
in large graphs. In 1930, Ramsey [40] showed the following:

For any two positive integers k and l, there is an associated number
R(k, l) such that any graph on n ≥ R(k, l) vertices must contain
either Kk as a subgraph or contain l independent vertices.

For example, R(3, 3) = 6 as stated in the party problem. It is not too difficult
to show that R(4, 4) = 17. However, the value of R(5, 5) is not yet determined
(in spite of the huge computational power we have today). All that is known
is 43 ≤ R(5, 5) ≤ 49 (see [25] and [36]). Relatively few exact Ramsey numbers
R(k, l) are determined. For an extensive survey on this topic, the reader is
referred to the dynamic survey in the Electronic Journal of Combinatorics at
http://www.combinatorics.org/.

In 1947, Erdős wrote an important paper [21] that helped start two areas in-
cluding combinatorial probabilistic methods and Ramsey theory. He established
the following lower bound for the Ramsey number R(k, k) by proving

R(k, k) ≥ 2k/2, (1)

the argument is quite simple and elegant:

Suppose we wish to find a graph on n vertices that does not contain Kk or
an independent subset of k vertices. How large can n be? For a fixed integer n,
there are all together 2(n

2) possible graphs on n vertices. We say a graph is bad
if it contains Kk or an independent subset of k vertices. How many bad graphs
can there be? There are

(
n
k

)
ways to choose k out of n vertices. So, there are

at most 2
(
n
k

)
2(n

2)−(k
2) bad graphs. Therefore there is a graph on n vertices that

is not bad if

2(n
2) ≥ 2

(
n

k

)
2(n

2)−(k
2).

So, for n ≥ 2k/2, there must be a graph on n vertices that is not bad, which
implies (1).

We note that for the upper bound there is an inductive proof to show that
R(k, k) ≤ (

2k−2
k−2

)
which is about 4k. In the previous five decades, there have

been some improvements only by a factor of a lower order for both the upper
and lower bounds [42, 19]. It remains unsettled (with Erdős award unclaimed)
to determine if limk→∞(R(k, k))1/k exists or what value it should be.

A basic notion in graph theory is “adjacency”. A vertex u is said to be
adjacent to another vertex v if {u, v} is an edge. Or, we say u is a neighbor of
v. Equivalently, v is a neighbor of u. The degree of a vertex u is the number of
edges containing u. If we restrict ourselves to simple graphs (i.e., at most one
edge between any pairs of vertices), then the degree of u is just the number of
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Figure 2: The collaboration graph.

neighbors that u has. Suppose that in a graph G the vertex vi has degree di for
1 ≤ i ≤ n. Then (d1, d2, . . . , dn) forms a degree sequence for G. Sometimes, we
organize the degree sequence so that d1 ≥ d2 ≥ . . . ≥ dn. Here comes a natural
question on graph realization: For what values di is the sequence (d1, d2, . . . , dn)
a degree sequence of some graph?

To answer this question, first we observe that the sum of all di’s must be even
since that is exactly twice the number of edges. This is the folklore “Handshake
Theorem”.

In a 1961 paper, Erdős and Gallai [24] answered the above question. They
gave a necessary and sufficient condition by showing that a sequence (d1, d2, . . . , dn),
where di ≥ di+1, is a degree sequence of some graph if and only if the sum of
di’s is even and for each integer r ≤ n − 1,

r∑
i=1

di ≤ r(r − 1) +
n∑

i=r+1

min{r, di}.

5



Another way to keep track of the degrees of a graph is to consider the degree
distribution as follows: Let nk denote the number of vertices having degree k.
Instead of writing down the degree sequence (which consists of n numbers and
n can be a very large number), we just use nk. Therefore, the number of values
that we need to keep does not exceed the maximum degree. If all degrees are
the same value, we say the graph is regular. In this case, only one of the nk’s is
nonzero.
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Figure 3: The number of vertices for each possible degree for the collaboration
graph.

Many real-world graphs have degree distribution satisfying the so-called
“power law”. Namely, the number nk of vertices of degree k is proportional
to k−β for some fixed positive value β. For example, the Collabration graph,
as illustrated in Figure 2, can be approximated by a power law with exponent
β = 2.46. The degree distribution of the Collaboration graph is included in
Figure 3 in log-log scale.

In a graph G, a path is a sequence of vertices v0, v1, . . . , vk such that vi−1 is
adjacent to vi for i = 1, . . . , k. The length of a path is the number of edges in
the path. For example, the above mentioned path has length k joining v0 and
vk. If v0 = vk, the path is said to be a cycle. A graph which contains no cycle is
called a tree. A graph is connected if any two vertices can be joined by a path.
For a graph G, a maximum subset of vertices each pair of which can be joined
by paths is called a connected component. Thus, a graph is connected if there is
only one connected component. In a connected graph, the distance between two
vertices u and v is the length of a shortest path joining u and v. The maximum
distance among all pairs of vertices is called the diameter of a graph.

In 1967, the psychologist Stanley Milgram [37] conducted a series of ex-
periments which indicated that any two strangers are connected by a chain
of intermediate acquaintances of length at most six. Since then, the so-called
“small world phenomenon” has long been a subject of anecdotal observation
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and folklore. Recent studies have suggested that the phenomenon is pervasive
in numerous networks arising in nature and technology, and in particular, in the
structural evolution of the World Wide Web [5, 33, 44].

In addition to “six degrees of separation”, various numbers have emerged
with many networks. In 1999, Barabási et al. [5] estimated that any two
webpages are at most 19 clicks away from one another (in certain models of the
Internet). Broder et al. [11] set up crawlers on a webgraph of 200 million nodes
and 1.5 billion links and reported that the average path length is about 16. A
mathematician who has written joint papers is likely to have Erdős number at
most eight [29] (i.e., with a chain of coauthors with length at most 8 connecting
to Erdős). The majority of actors or actresses have the so-called “Kevin Bacon
number” two or three.

Before we make sense of these numbers, some clarification is in order: There
are in fact two different interpretations of ‘short distance’ in a network. One
notion is the diameter of the graph. Another notion is the average distance
(which might be closer to what was meant by these experiments). We will
discuss the small world phenomenon further in a later section.

3 Random graphs in a nutshell

What does a “random graph” mean? Before proceeding to describe random
graphs, some clarification for “random” is in order. According to the Cambridge
Dictionary, “random” means “happening, done or chosen by chance rather than
according to a plan”. Quite contrary to this explanation, our random graphs
have precise meanings and can be clearly defined. Using the terminology in
probability, a random graph is a random variable defined in a probability space
with a probability distribution. In layman’s terms, we first put all graphs on n
vertices in a lottery box and then the graph we pick out of the box is a random
graph. (In this case, all graphs are chosen with equal probability.)

What do we want from our random graphs? Well, we would like to say that a
random graph (in some given model) has certain properties (e.g., having small
diameter). Such a statement means that with probability close to 1 (as the
number n of vertices approaches infinity), the random graph we pick out of the
lottery box satisfies the property that we specified. In other words, a random
graph has a specified property means that almost all graphs of interest have the
desired property. Note that this is quite a strong implication! Any statement
about a random graph is really about almost all graphs! The beauty of random
graphs lies in being able to use relatively few parameters in the model to capture
the behavior of almost all graphs of interest (which can be quite numerous and
complex).

In the early days of the subject, Erdős and Rényi introduced two random
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graph models. The first one is a random graph F(n, m) defined on all graphs
with n vertices and m edges each of which is chosen with equal probability.
The second is the celebrated Erdős-Rényi random graph G(n, p) defined on all
graphs on n vertices and each edge is chosen independently with probability
p. Consequently, a graph on n vertices and x edges is chosen with probability
px(1 − p)(

n
2)−x in G(n, p).

The advantage of the Erdős-Rényi model is the independence of choices for
the edges (i.e., each pair of vertices has its own dice for determining being
chosen as an edge). Since the probability of two independent events is the
product of probabilities of two events, we can compute with ease. For example,
the probability of a random graph in G(n, p) containing a fixed triangle is 1/8
for p = 1/2. It is possible to compute such a probability for a random graph in

F(n, m), e.g.,
((n

2)−3

m−3

)
/
((n

2)
m

)
, which is a more complicated expression. For many

problems, such as the diameter problem, it can be quite nontrivial for F(n, m)
because the dependency among edges is getting in the way.

To model real graphs, there are some obvious difficulties. For example, the
random graph G(n, p) has all degrees very close to pn if the graph is not so
sparse, (i.e., p ≥ log n/n). The distribution of the degrees follows the same bell
curve for every vertex. As we know, many real-world graphs satisfy the power
law which is very different from the degree distribution of G(n, p). In order
to model real-world networks, it is imperative to consider random graphs with
general degree distribution and, in particular, the power law distribution.

There are basically two types of random graph models for general degree
distributions. The configuration model is a take-off from random regular graphs
[6]. The way to define random regular graphs Gk of degree k on n vertices
is to consider all possible matchings in a complete graph Kkn. Note that a
matching is a maximum set of vertex-disjoint edges. Each matching is chosen
with equal probability. We then get a random k-regular graph by partitioning
the vertices into subsets of size k. Each k- subset then is associated with a
vertex in a random regular graph Gk. Although such a random regular graph
might contain loops (i.e., an edge having both endpoints the same vertex), the
probability of such an event is of a lower order and can be controlled. It is then
obvious to define random graphs with general degrees. Instead of partitioning
the vertex set of the large graph into equal parts, we choose a random matching
of a complete graph on

∑
i di vertices which are partitioned into subsets of sizes

d1, d2, . . . , dn. Then we form the random graph by associating each edge in the
matching with an edge between associated vertices.

In the configuration model, there are nontrivial dependencies among the
edges. As a generalization of the Erdős-Rényi model, there is a random graph
model for given expected degrees. Let w = (w1, w2, . . . , wn) denote the speci-
fied degrees. The G(w) model yields random graphs with expected degrees w.
The edge between vi and vj is independently chosen with probability wiwj/W
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where W =
∑

i wi. In other words, each pair of vertices has its own dice
with probability assigned so that the expected degree at vertex vi is exactly
wi. The Erdős-Rényi model is just the case with all wi’s equal to pn. Since
the G(w) model inherits the robustness and independence of the Erdős-Rényi
model, many strong properties can be derived. We will discuss some of these
further in Section 5, especially when w satisfies power laws.

All the random graph models mentioned above are off-line models. Since
real-world graphs are dynamically changing — both in adding and deleting
vertices and edges — there are several on-line random graph models in which
the probability spaces are changing at the tick of the clock. In fact, in the study
of complex real-world graphs, the on-line model came to attention first.

There are a large number of research papers, surveys and books on random
graphs, mostly about the Erdős-Rényi model G(n, p). After the year 2000, the
study of real-world graphs has led to interesting directions and new methods
for analyzing random graphs with general degree distributions. Many on-line
models have been proposed and published. Here we will only be able to cover the
main ones — the preferential attachment schemes and the duplication model.

4 Classical random graphs

In early 60’s, Erdős and Rényi wrote a series of influential papers on random
graphs. Their modeling and analysis are thorough and elegant. Their ap-
proaches and methods are powerful and have had enormous impact up to this
day. In this section, we will give a brief overview. First we will describe the
classical results on the evolution of random graphs G(n, p) of the Erdős-Rényi
model. Then we will discuss the diameter of G(n, p) as the edge density ranges
from 0 to 1.

4.1 The evolution of the Erdős-Rényi graph

What does a random graph in G(n, p) look like? Erdős and Rényi [23] gave a
full answer for the edge density p ranging from 0 to 1.

At the start, there is no edge and the edge density is 0. We have isolated
vertices.

As p increases, the expected number p
(
n
2

)
of edges gets larger. When there

are about
√

n edges, how many connected components are there and what sizes
and structures are they? For 0 < p � 1/n, Erdős and Rényi [23] showed that
the random graph G is a disjoint union of trees. Furthermore, they gave a
beautiful formula. For p = cn−k/(k−1), the probability that j is the number of
connected components in G formed by trees on k vertices is λje−λ/j! where λ =
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(2c)k−1kk−2/k!. For example, when we have about
√

n edges, the probability
that the random graph G contains j trees on 3 vertices is close to 2j/j! (if n is
large enough).

As we have more edges, cycles start to appear. When the graph has a linear
number of edges, i.e., p = c/n, with c < 1, almost all vertices are in connected
components of trees and there are only a small number of cycles. Namely, the
expected number of cycles is 1

2 log 1
1−c − c

2 − c2

4 .

When a random graph has edges ranging from slightly below n/2 to slightly
over n/2 edges, i.e., p = (1 + o(1))/n, there is an unusual phenomenon, called
“double jumps”. What are double jumps and why is it so unusual? In the
study of “threshold function” or, “phase transition” that happens in natural
or evolving systems, it is of interest to identify the critical point, below which
the behavior is dramatically different from what is above. Erdős and Rényi [23]
found that as p is smaller than 1/n, the largest component in G has size O(log n)
and all components are either trees or unicyclic (i.e., each component contains
at most one cycle). If p is (1 + µ)/n and µ > 0, then the giant component
emerges. However, when p = 1/n, the largest component is of size O(n2/3).
There has been detailed analysis examining this tricky transition in details (see
[7] and [31]).

When p = c/n for c > 1, the random graph G has one giant component
and all others are quite small, of size O(log n). Also, Erdős and Rényi [23]
determined the number of vertices in the giant connected component to be
f(c)n where

f(c) = 1 − 1
c

∞∑
k=1

kk−1

k!
(ce−c)k. (2)

Finally when p = c log n/n and c > 1, the random graph G is almost always
connected. When c goes to infinity, G is not only connected but is almost
regular. Namely, all vertices have degrees close to pn.

4.2 The diameter of the Erdős-Rényi graph

We consider the diameter of a random graph G in G(n, p) for all ranges of
p including the range for which G(n, p) is not connected. For a disconnected
graph G, the diameter of G is defined to be the diameter of its largest connected
component.

Roughly speaking, the diameter of a random graph in G(n, p) is of order
log n

log(np) if the expected degree np is at least 1. Note that this is best possible in
the following sense. For any graph with degrees at most d, the number of vertices
that can be reached within distance k is at most 1 + d + d(d− 1) + d(d − 1)2 +

10



. . . + d(d− 1)k−1. This sum should be at least n if k is the diameter. Therefore
we known that the diameter, denoted by diam(G) is at least (log n)/ log(d− 1).

To be precise, it can be shown the diameter of a random graph G in G(n, p)
is (1 + o(1)) log n

log np if the expected degree np goes to infinity as n approaches
infinity. When np ≥ c > 1, the diameter diam(G) is within a constant factor
of log n

log np where the constant depends only on c and is independent of n. When
np = c < 1, the random graph is surely disconnected and diam(G) is equal to
the diameter of a tree component.

In fact, the diameter of a graph G in G(n, p) is quite predictable as follows.
The values for the diameter of G(n, p) is almost surely concentrated on at most
two values around log n

log np if np
log n = c > 8. When np

log n = c > 2, the diameter
of G(n, p) is almost surely concentrated on at most three values. For the range
2 ≥ np

log n = c > 1, the diameter of G(n, p) is almost surely concentrated on at
most four values.

Range diam(G(n, p)) Reference

np
log n

→ ∞ Concentrated on at most 2 values [9]
np

log n
= c > 8 Concentrated on at most 2 values [12]

8 ≥ np
log n

= c > 2 Concentrated on at most 3 values [12]

2 ≥ np
log n

= c > 1 Concentrated on at most 4 values [10]

1 ≥ np
log n

= c > c0 Concentrated on at most 2b 1
c0
c + 4 values [12]

log n > np → ∞ diam(G(n, p)) = (1 + o(1)) log n
log(np)

[12]

np ≥ c > 1 The ratio
diam(Gn,p)

log n
log(np)

is finite [12]

(between 1 and f(c))

np < 1 diam(G(n, p)) equals the diameter of [35]

a tree component if (1 − np)n1/3 → ∞

Table 2: The diameter of random graphs G(n, p).

It is of particular interest to consider random graphs G(n, p) for the range
of np > 1 and np ≤ c log n for some constant c since this range includes the
emergence of the unique giant component. Because of a phase transition in
connectivity at p = log n/n, the problem of determining the diameter of G(n, p)
and its concentration seems to be difficult for certain ranges of p. If np

log n =
c > c0 for any (small) constant c and c0, then the diameter of G(n, p) is almost
surely concentrated on finitely many values, namely, no more than 2b 1

c0
c + 4

values.

These facts are summarized in Table 2 with references listed. As we can see
from the table, numerous questions remain.
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5 Random power law graphs

5.1 Parameters for modeling power law graphs

A large realistic network usually has a huge number of parameters with compli-
cated descriptions. By “modeling a realistic network”, we mean cutting down
the number of parameters to relatively few and still capture a good part of the
character of the network.

To choose the parameters for modeling a real network, the exponent β of
the power law is relatively easy to select. We can plot the log-degree versus
log-frequency table and choose a good approximation of the slope.

In a graph G, suppose that there are y vertices of degree x. Then G is
considered to be a power law graph if x and y satisfy (or can be approximated
by) the following equation:

log y = α − β log x. (3)

In other words, we have

| {v|deg(v) = x} | ≈ y =
eα

xβ
.

Basically, α is the logarithm of the volume of the graph and β can be regarded
as the log-log growth rate of the graph.

To take a closer look of the degree distribution of a typical realistic graph,
several impediments obviously exist.

(a) When we fit the power law model, there are discrepancies especially when
the degree is very small or very large. There is almost always a heavy
tail distribution at the upper range and there seems to be scattering at
the lower range. For example, for the collaboration graph, should we or
shouldn’t we include the data point for isolated vertices (an author with
no coauthors)? Should we stay with the largest component or include all
small components (including the isolated vertices)?

(b) The power law states that the number of vertices of degree k is proportional
to k−β . We can approximate the number of vertices of degree k by the
function f(k) = ck−β for some constant c. However, f(k) is usually not
an integer. By taking either the ceiling or floor of f(k), some errors are
inevitable. In fact, such errors are acute when k or f(k) is small.

(c) The power law model is usually a better fit in the middle range (than at
either end). Still, in many examples, there is a visible slight “hump” in
the curve instead of the straight line representing the power law in the
log-log table.
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Among the above three points, (c) is mainly due to first-order approxima-
tions. The straight line with slope β is a linear approximation of the actual
plotted data. Thus the power law model is an important and necessary step for
more complicated real cases. Here, we will first discuss (b) and then (a).

Item (b) concerns rounding errors which can be checked by the following
basic calculations about the power law graphs according to (3).

(1) The maximum degree of the graph is at most e
α
β . Note that 0 ≤ log y =

α − β log x.

(2) The number of vertices n can be computed as follows (under the assumption
that the maximum degree is e

α
β ). By summing y(x) for x from 1 to e

α
β , we have

n =
e

α
β∑

x=1

eα

xβ
≈




ζ(β)eα if β > 1,
αeα if β = 1,
e

α
β

1−β if 0 < β < 1,

where ζ(t) =
∑∞

n=1
1
nt is the Riemann Zeta function.

(3) The number of edges E can be computed as follows:

E =
1
2

e
α
β∑

x=1

x
eα

xβ
≈




1
2ζ(β − 1)eα if β > 2,
1
4αeα if β = 2,

1
2

e
2α
β

2−β if 0 < β < 2.

(4) The differences of the real numbers in (1)-(3) and their integer parts can be
estimated as follows: For the number n of vertices, the error term is at most
e

α
β . For β ≥ 1, it is o(n), which is a lower order term. For 0 < β < 1, the error

term for n is relatively large. In this case, we have

n ≤ e
α
β

1 − β
− e

α
β =

βe
α
β

1 − β
.

As can be seen, n can have the same magnitude as e
α
β

1−β . Therefore the rounding
error can be of the same order of magnitude. For the number E of edges, similar
situations occur. For β ≥ 2, the rounding error term of E is o(E), a lower order
term. For 0 < β < 2, the error of E has the same magnitude as in the formula
of item (3). Thus, one is advised to exercise caution when dealing with the case
0 < β < 2.

To deal with the concerns mentioned above in (a), we need additional pa-
rameters.

• The average degree w is a useful parameter.

• The second order average degree w̃ =
∑

i w2
i /

∑
i wi.
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• The maximum degree m = dmax and also the minimum degree dmin denote
the range that the power law degree distribution fits (within acceptable
approximation). In other words, the maximum degree m = dmax and the
minimum degree dmin are meant to be the largest and the least degrees in
a power law subgraph of G. Often, dmin is taken to be 1 unless otherwise
specified.

With these parameters, we are ready to define a random power law graph.
For random graphs with given expected degree sequences satisfying a power law
distribution with exponent β, we may assume that the expected degrees are
wi = ci−

1
β−1 for i satisfying i0 ≤ i < n + i0. Here c depends on the average

degree and i0 depends on the maximum degree m, namely, c = β−2
β−1wn

1
β−1 , i0 =

n( w(β−2)
m(β−1))

β−1.

The power law graphs with exponent β > 3 are quite different from those
with exponent β < 3 as evidenced by the value of w̃ (assuming m � w).

w̃ =




(1 + o(1))w (β−2)2

(β−1)(β−3) if β > 3,

(1 + o(1))1
2w ln 2m

w if β = 3,

(1 + o(1))dβ−2 (β−2)β−1m3−β

(β−1)β−2(3−β)
if 2 < β < 3.

The above values of w̃ are quite useful in the study of average distance and
diameter of random graphs.

5.2 The evolution of random power law graphs

A natural question concerning the configuration model is how the random graphs
evolve for power law distributions. Can we mimic the classical analysis as in
the Erdős-Rényi random graph model?

Here we consider a configuration model with degree distribution as in the
(α, β)-graph. As it turns out, the evolution only depends on β and not on α as
follows.

1. When β > β0 = 3.47875 . . ., the random graph almost surely has no giant
component where the value β0 = 3.47875 . . . is a solution to

ζ(β − 2) − 2ζ(β − 1) = 0.

When β < β0 = 3.47875 . . ., there is almost surely a unique giant compo-
nent.

2. When 2 < β < β0 = 3.47875 . . ., the second largest component is almost
surely of size Θ(log n). For any 2 ≤ x < Θ(log n), there is almost surely a
component of size x.
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3. When β = 2, almost surely the second largest component is of size Θ( log n
loglog n ).

For any 2 ≤ x < Θ( log n
loglog n ), there is almost surely a component of size x.

4. When 1 < β < 2, the second largest component is almost surely of size
Θ(1). The graph is almost surely not connected.

5. When 0 < β < 1, the graph is almost surely connected.

6. When β = β0 = 3.47875 . . ., the situation is complicated. It is similar to
the double jump of the random graph G(n, p) with p = 1

n . For β = 1,
there is a nontrivial probability for either case that the graph is connected
or disconnected.

A useful tool in configuration model is a result of Molloy and Reed [38, 39]:

For a random graph with (γi + o(1))n vertices of degree i, where γi are
nonnegative values which sum to 1 and n is the number of vertices, the giant
component emerges when Q =

∑
i≥1 i(i−2)γi > 0, provided that the maximum

degree is less than n1/4−ε and some “smoothness” conditions are satisfied. Also,
there is almost surely no giant component when Q =

∑
i≥1 i(i − 2)γi < 0 and

the maximum degree is less than n1/8−ε.

Let us consider Q for our (α, β)-graphs with β > 3.

Q =
1
n

e
α
β∑

x=1

x(x − 2)b eα

xβ
c

≈ 1
ζ(β)


 e

α
β∑

x=1

1
xβ−2

− 2
e

α
β∑

x=1

1
xβ−1




≈ ζ(β − 2) − 2ζ(β − 1)
ζ(β)

Hence, we consider the value β0 = 3.47875 . . ., which we recall is a solution
to ζ(β − 2) − 2ζ(β − 1) = 0. If β > β0, we have

e
α
β∑

x=1

x(x − 2)b eα

xβ
c < 0.

We remark that for β > 8, Molloy and Reed’s result immediately implies
that almost surely there is no giant component. When β ≤ 8, additional analysis
is needed to deal with the degree constraints [2].

It can be shown that the second largest component almost surely has size
Θ(log n). Furthermore, the second largest component has size at least Θ(log n).
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5.3 G(w) model for power law graphs

In the Erdős-Rényi model G(n, p), the threshold function for the phase transition
of the giant component is at p = 1/n. Namely, when the average degree pn is
less than 1, all connected components are small (of size O(log n)) and there is no
giant component. When the average degree is more than 1, the giant component
emerges in full swing. (There is a “double jump” which takes place when the
average degree is close to 1 as discussed in Section 4.)

For the random graph model G(w), with given expected degrees w, it is
natural to ask the same question:

What parameter in which range will trigger the (sudden) emergence
of the giant component?

In addition to w, the expected average degree, we have scores of parameters,
e.g., w̃ and higher order average degrees. Which parameter w, w̃ or others is
critical for the rise of the giant component?

These questions were answered in [13]:

Suppose that G is a random graph in G(w) with expected degree sequence w. If
the expected average degree w is strictly greater than 1, then the following holds:
(1) Almost surely G has a unique giant component. Furthermore, the volume
of the giant component is at least (1− 2√

we
+ o(1))Vol(G) if w ≥ 4

e = 1.4715 . . .,

and is at least (1 − 1+log w
w + o(1))Vol(G) if w < 2.

(2) The second largest component almost surely has size at most (1+o(1))µ(w) log n,
where

µ(w) =
{ 1

1+log w−log 4 if w > 4/e;
1

w−1−log w if 1 < w < 2.

Moreover, with probability at least 1 − n−k, the second largest component has
size at most (k + 1 + o(1))µ(w) log n, for any k ≥ 1.

There is a sharp asymptotic estimate for the volume of the giant component
for a random graph in G(w). In [15], it was proved that if the expected average
degree is strictly greater than 1, then almost surely the giant component in a
graph G in G(w) has volume λ0Vol(G)+O(

√
n log3.5 n), where λ0 is the unique

nonzero root of the following equation:
n∑

i=1

wie
−wiλ = (1 − λ)

n∑
i=1

wi. (4)

Because of the robustness of the G(w) model, many properties can be derived
for appropriate degree distributions, including power law graphs.

Average distance and the diameter:
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A random graph G in G(w) has average distance almost surely (1+o(1)) log n
log w̃ , if

w satisfies certain conditions (called admissible conditions in [14]). The diame-
ter is almost surely Θ( log n

log w̃ ). In addition to studying the average distance and
diameter, the structure of a random power law graph is very interesting, espe-
cially for the range 2 < β < 3 where the power law exponents β for numerous real
networks reside. In this range, the power law graph can be roughly described
as an “octopus” with a dense subgraph having small diameter O(log log n),
as the core while the overall diameter is O(log n) and the average distance is
O(log log n). When β > 3 and the average degree w is strictly greater than 1, al-
most surely the average distance is (1 +o(1)) log n

log w̃ and the diameter is Θ(log n).
A phase transition occurs at β = 3 and then the graph has diameter almost
surely Θ(log n) and average distance Θ(log n/ log log n).

Eigenvalues:

Eigenvalues of graphs are useful for controlling many graph properties and conse-
quently have numerous algorithmic applications including clustering algorithms,
low rank approximations, information retrieval and computer vision. In the
study of the spectra of power law graphs, there are basically two competing
approaches. One is to prove analogues of Wigner’s semi-circle law (such as for
G(n, p)) while the other predicts that the eigenvalues follow a power law distri-
bution [27]. Although the semi-circle law and the power law have nothing in
common, both approaches are essentially correct if one considers the appropriate
matrices. there are in fact several ways to associate a matrix to a graph. The
usual adjacency matrix A associated with a (simple) graph has eigenvalues quite
sensitive to the maximum degree (which is a local property). The combinatorial
Laplacian D − A with D denoting the diagonal degree matrix is a major tool
for enumerating spanning trees and has numerous applications. Another matrix
associated with a graph is the (normalized) Laplacian L = I − D−1/2AD−1/2

which controls the expansion/isoperimetrical properties (which are global) and
essentially determines the mixing rate of a random walk on the graph. The tra-
ditional random matrices and random graphs are regular or almost regular so
the spectra of all the above three matrices are basically the same (with possibly
a scaling factor or a linear shift). However, for graphs with uneven degrees, the
above three matrices can have very different distributions.

Here we state bounds for eigenvalues for random graphs in G(w) with a
general degree distribution from which the results on random power law graphs
then follow [18].

1. The largest eigenvalue of the adjacency matrix of a random graph with a
given expected degree sequence is determined by m, the maximum degree,
and w̃, the weighted average of the squares of the expected degrees. In
this case the largest eigenvalue of the adjacency matrix is almost surely
(1 + o(1))max{w̃,

√
m} provided some minor conditions are satisfied. In

addition, if the kth largest expected degree mk is significantly larger than
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w̃2, then the kth largest eigenvalue of the adjacency matrix is almost surely
(1 + o(1))

√
mk.

2. For a random power law graph with exponent β > 2.5, the largest eigen-
value of a random power law graph is almost surely (1+o(1))

√
m where m

is the maximum degree. Moreover, the k largest eigenvalues of a random
power law graph with exponent β have power law distribution with expo-
nent 2β − 1 if the maximum degree is sufficiently large and k is bounded
above by a function depending on β, m and w, the average degree. When
2 < β < 2.5, the largest eigenvalue is heavily concentrated at cm3−β for
some constant c depending on β and the average degree.

3. The eigenvalues of the Laplacian satisfy the semi-circle law under the
condition that the minimum expected degree is relatively large (� the
square root of the expected average degree). This condition contains the
basic case when all degrees are equal (the Erdős-Rényi model). If we
weaken the condition on the minimum expected degree, we can still have
the following strong bound for the eigenvalues of the Laplacian which
implies strong expansion rates for rapid mixing,

max
i6=0

|1 − λi| ≤ (1 + o(1))
4√
w

+
g(n) log2 n

wmin

where w is the expected average degree, wmin is the minimum expected
degree and g(n) is any slow growing function of n.

6 On-line random graphs

6.1 Preferential attachment schemes

The preferential attachment scheme is often attributed to Herbert Simon. In his
paper [41] of 1955, he gave a model for word distribution using the preferential
attachment scheme and derived Zipf’s law (i.e., the probability of a word having
occurred exactly i times is proportional to 1/i).

The basic setup for the preferential attachment scheme is a simple local
growth rule which leads to a global consequence — a power law distribution.
Since this local growth rule gives preferences to vertices with large degrees, the
scheme is often described by “the rich get richer”. Of interest is to determine
the exponent of the power law from the parameters of the local growth rule.

There are two parameters for the preferential attachment model:

• A probability p, where 0 ≤ p ≤ 1.
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• An initial graph G0, that we have at time 0.

Usually, G0 is taken to be the graph formed by one vertex having one loop. (We
consider the degree of this vertex to be 1, and in general a loop adds 1 to the
degree of a vertex.) Note, in this model multiple edges and loops are allowed.

We also have two operations we can do on a graph:

• Vertex-step — Add a new vertex v, and add an edge {u, v} from v by
randomly and independently choosing u in proportion to the degree of u
in the current graph.

• Edge-step — Add a new edge {r, s} by independently choosing vertices r
and s with probability proportional to their degrees.

Note that for the edge-step, r and s could be the same vertex. Thus loops
could be created. However, as the graph gets large, the probability of adding a
loop can be well bounded and is quite small.

The random graph model G(p, G0) is defined as follows:

Begin with the initial graph G0.
For t > 0, at time t, the graph Gt is formed by modifying Gt−1 as follows :

with probability p, take a vertex-step,
otherwise, take an edge-step.

When G0 is the graph consisting of a single loop, we will simplify the notation
and write G(p) = G(p, G0).

There were quite a number of papers analyzing the preferential attachment
model G(p), usually having similar conclusions of power law degree distribution.
However, many of these analyses are heuristics without specifying the ranges
for the power law to hold. Heuristics often run into the danger of incorrect
deductions and incomplete conclusions. It is quite essential to use rigorous
proofs which help specify the appropriate conditions and ranges for the power
law. The following statement was proved in [16].

For the preferential attachment model G(p), almost surely the number of
vertices with degree k at time t is

Mkt + O(2
√

k3t ln(t)).

where M1 = 2p
4−p and Mk = 2p

4−p

Γ(k)Γ(1+ 2
2−p )

Γ(k+1+ 2
2−p )

= O(k−(2+ p
2−p )), for k ≥ 2. In

other words, almost surely the graphs generated by G(p) have the power law
degree distribution with the exponent β = 2 + p

2−p .

19



6.2 Duplication models

Networks of interactions are present in all biological systems. The interactions
among species in ecosystems, between cells in an organism and among molecules
in a cell all lead to complex biological networks. Using current technological
advances, extensive data of such interactions has been acquired. To find the
underlying structure in these databases, it is of great importance to understand
the basic principles of various genetic and metabolic networks.

It has been observed that many biological networks have power law graphs
with exponents β less than 2. The ranges for the exponents of the power law
for biological networks are quite different from the ranges for nonbiological net-
works. Various examples, such as the WWW-graphs, call graphs, and various
social networks, among others, are power law graphs with the exponent β be-
tween 2 and 3. Table 3 lists the exponents of a variety of biological and non-
biological networks with associated references. As we saw in Section 6.1, the
preferential attachment model generates graphs with power law degree distri-
bution with exponents β between 2 and 3. Therefore there is a need to consider
alternative models for biological networks.

Biological networks exponent β references
Yeast protein-protein net 1.6,1.7 [20, 43]

E. Coli metabolic net 1.7, 2.2 [3, 28]
Yeast gene expression net 1.4–1.7 [20]

Gene functional interaction 1.6 [30]

Nonbiological networks
Internet graph 2.2 (indegree), 2.6 (outdegree) [4, 27, 34]

Phone call graph 2.1–2.3 [1, 2]
Collaboration graph 2.4 [29]
Hollywood graph 2.3 [4]

Table 3: Power law exponents for biological and nonbiological networks.

The duplication of the information in the genome — genes and their con-
trolling elements — is a driving force in evolution and a determinative factor
of biological networks. The process of duplication is quite different from the
preferential attachment process that is regarded by many as the basic growth
rule for most nonbiological networks.

Here we consider a duplication model. If we only allow pure duplication, the
resulting graph depends heavily on the initial graph and does not satisfy the
power law. So we consider a duplication model that allows randomness within
the duplication step as defined below. We will see that this duplication model
generates power law graphs with exponents in the range including the interval
between 1 and 2 and therefore is more suitable for modeling complex biological
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networks.

There are two basic parameters for the duplication model:

• A selection probability p, where 0 ≤ p ≤ 1.

• An initial graph G0, that we have at time 0.

Usually, G0 is taken to be the graph formed by one vertex. However, G0

can be taken to be any finite simple connected graph. Unlike the preferential
attachment model, in this model the generated random graph is always a simple
graph.

There is one basic operation:

Duplication step: A sample vertex u is selected randomly and uniformly from
the current graph. A new vertex v and edge {u, v} is added to the graph. For
each neighbor w of u, with probability p, {v, w} is added as a new edge.

The edge {u, v} in the duplication step is called a basic edge. The vertex u
is said to be the parent of v and v is called a child of u. We note that a vertex
can have several children or no child at all and that each vertex not in the initial
graph G0 has a parent. All basic edges from children to parents form a forest
where the vertices in G0 are roots of component trees. All terms like “leafs”
and “descendants”, if not defined, refer to this forest.

The duplication step can be further decomposed into two parts — vertex-
duplication and edge-duplication as follows:

Vertex-duplication: At time t, randomly select a sample vertex u and add a new
vertex v and an edge {u, v}.
Edge-duplication: At time t, for the vertex v created, its parent u and each
neighbor w of u, with probability p, add an edge {v, w} to w.

For any vertex v, a descendant of v can only be connected to descendants of
v’s neighbors (including v itself). An edge {x, y} is said to be a descendant of
an edge {u, v}, if “x is a descendant of u and y is a descendant of v” or “x is a
descendant of v and y is a descendant of u”.

We remark that having the basic edges {u, v} makes the graph G always
connected. This helps avoid degenerate cases such as having mostly isolated
vertices.

For the above duplication model, it can be shown [17] that its degree distri-
bution obeys a power law with the exponent β of the power law satisfying the
following equation:

1 + p = pβ + pβ−1. (5)

We remark that the solutions for (5) that are illustrated in figure 4 consist
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Figure 4: The value of β as a function of p.

of two parts. One is the line β = 1. The other is a curve which is a mono-
tonically decreasing function of p. The two curves intersect at (x, 1) where
x = 0.56714329 . . . the solution of x = − log x. One very interesting range for
β is when p is near 1/2. To get a power-law with exponent 1.5, for example,
one should choose p = 0.535898 . . .. Also we see that the second curve inter-
sects zero at p = (

√
5 − 1)/2, an intriguing number (the “golden mean”). At

p = 1/2, one solution for β is 2. Although there are two solutions for each p,
the stable solutions are on the curve when p < 0.56714329 . . . and β = 1 for
p > 0.56714329 . . ..

7 Remarks

The small world phenomenon, that occurs ubiquitously in numerous existing
networks, refers to two similar but different properties:

Small distance — Between any pair of nodes, there is a short path.

The clustering effect — Two nodes are more likely to be adjacent if they share
a common neighbor.

There have been various approaches to model networks that exhibit the
small world phenomenon. In particular, the aspect of small distances can be
well explained by using random graphs with general degree distributions which
include the power law distribution. However, the other feature concerning the
clustering effect seems much harder to model.
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To model the clustering effect, a typical approach is to add random edges to
a grid graph or the like ([26, 32, 44]). Such grid-based models are quite restric-
tive and far from satisfactory for modeling biological networks or collaboration
graphs, for example. On the other hand, random power law graphs are good for
modeling small distance, but fail miserably for modeling the clustering effect.
In a way, the aspect of small distances is about neighborhood expansion while
the aspect of the clustering effect is about neighborhood density. The related
graph-theoretical parameters seem to be of an entirely different scale. For ex-
ample, while the clustering effect is quite sensitive to average degree, the small
distance effect is not.

The heart of the problem can be quite simply stated: For a given network,
what is its true geometry? How can we capture the geometry of the network
(without invoking too many parameters)?

References

[1] J. Abello, A. Buchsbaum, and J. Westbrook, A functional approach to external
graph algorithms, Proc. 6th European Symposium on Algorithms, Springer, Berlin,
1998, 332–343.

[2] W. Aiello, F. Chung and L. Lu, A random graph model for massive graphs, Pro-
ceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing,
ACM Press, New York, 2000, 171–180.

[3] R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, Review
of Modern Physics 74 (2002), 47–97.

[4] A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science
286 (1999), 509–512.

[5] A.-L. Barabási, R. Albert, and H. Jeong, Scale-free characteristics of random
networks: the topology of the world-wide web, Physica A 281 (2000), 69–77.

[6] E. A. Bender and E. R. Canfield, The asymptotic number of labeled graphs with
given degree sequences. J. Combinatorial Theory Ser. A 24 (1978), 296–307.

[7] B. Bollobás, The evolution of random graphs, Trans. Amer. Math. Soc. 286
(1984), 257–274.

[8] B. Bollobás, The diameter of random graphs, Trans. Amer. Math. Soc. 267
(1981), 41–52.

[9] B. Bollobás, Random Graphs, Academic Press, New York, 1985, xvi+447pp.

[10] B. Bollobás, The evolution of sparse graphs, Graph Theory and Combinatorics
(Cambridge 1983), Academic Press, London-New York, 1984, 35–57.

[11] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins and J. Wiener, Graph Structure in the Web, Proceedings of the
WWW9 Conference, May, 2000, Amsterdam. Paper version appeared in Com-
puter Networks 33 (2000), 309–320.

[12] F. Chung and L. Lu, The diameter of sparse random graphs, Advances in Applied
Math. 26 (2001), 257–279.

23



[13] F. Chung and L. Lu, Connected components in random graphs with given ex-
pected degree sequences, Annals of Combinatorics 6 (2002), 125–145.

[14] F. Chung and L. Lu, The average distances in random graphs with given expected
degrees, Proceeding of National Academy of Science 99 (2002), 15879–15882.

[15] F. Chung and L. Lu, The volume of the giant component of a random graph with
given expected degrees, SIAM J. Discrete Math., 20 (2006), 395–411.

[16] F. Chung and L. Lu, Complex Graphs and Networks, CBMS Lecture Series, No.
107, AMS Publications, 2006, vii + 264pp.

[17] F. Chung, L. Lu, G. Dewey and D. J. Galas, Duplication models for biological
networks, J. Computational Biology 10 no. 5 (2003), 677–687.

[18] F. Chung, L. Lu and V. Vu, The spectra of random graphs with given expected
degrees, Proceedings of National Academy of Sciences 100 no. 11 (2003), 6313–
6318.

[19] D. Conlon, A new upper bound for diagonal Ramsey numbers, Annals of Mathe-
matics, to appear.

[20] S. N. Dorogovtsev and J. F. F. Mendes, Scaling properties of scale-free evolving
networks: Continuous approach, Phys. Rev. E 63 056125 (2001), 19 pp.
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