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EMBEDDING GRAPHS IN BOOKS: A LAYOUT PROBLEM
WITH APPLICATIONS TO VLSI DESIGN*

FAN R. K. CHUNG’, FRANK THOMSON LEIGHTON: AND ARNOLD L. ROSENBERG

Abstract. We study the graph-theoretic problem of embedding a graph in a book with its vertices in a
line along the spine of the book and its edges on the pages in such a way that edges residing on the same
page do not cross. This problem abstracts layout problems arising in the routing of multilayer printed circuit
boards and in the design of fault-tolerant processor arrays. In devising an embedding, one strives to minimize
both the number of pages used and the "cutwidth" of the edges on each page. Our main results (1) present
optimal embeddings of a variety of families of graphs; (2) exhibit situations where one can achieve small
pagenumber only at the expense of large cutwidth; and (3) establish bounds on the minimum pagenumber
of a graph based on various structural properties of the graph. Notable in the last category are proofs that
(a) every n-vertex d-valent graph can be embedded using O(dn1/2) pages, and (b) for every d > 2 and all
large n, there are n-vertex d-valent graphs whose pagenumber is at least

log n ]"
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1. Introduction.
1.1. The problem. We study here a graph embedding problem that can be viewed

in a variety of ways. We start with an undirected graph G.
Formulation 1. To embed G in a book, with its vertices on the spine of the book

and its edges on the pages, in such a way that edges residing on the same page do not
cross.

We seek embeddings of graphs in books that use pages that are few in number
and small in width. (The width of a page is the maximum number of edges that cross
any line perpendicular to the spine of the book. The width of a book embedding is the
maximum width of any page ofthe book. The cumulativepagewidth ofa book embedding
is the sum of the widths of all the pages.) The results we present are of four types"

(1) We characterize graphs that can be embedded in books having one or two
pages. For instance, the one-page graphs are precisely the outerplanar graphs. (A graph
is outerplanar if its vertices can be placed on a circle in such a way that its edges are
noncrossing chords of the circle.)

(2) We find upper bounds on the number of pages required by graphs of valence
(i.e., vertex-degree) at most d, and we show that these bounds are often approached

* Received by the editors December 17, 1984, and in revised form February 20, 1986. A portion of this
paper was presented at the Thirteenth International IEEE Symposium on Fault-Tolerant Computing and a
portion at the Fifth International Symposium on Theory and Applications of Graphs.

f Combinatorial Optimization Department, Bell Communications Research, Morristown, New Jersey
07960., Department of Mathematics and Laboratory for Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts 02139. A portion of this research was done while this author was visiting
Bell Laboratories, Murray Hill, New Jersey. The research of this author was supported in part by a National
Science Foundation Presidential Young Investigator Award with matching funds from Xerox, by Defence
Advanced Research Projects Agency contract N00014-80-C-0622, and by Air Force contract OSR-82-0326.

Department of Computer Science, Duke University, Durham, North Carolina 27706. A portion of
this research was done while this author was visiting Bell Laboratories, Murray Hill, New Jersey. The
research of this author was supported in part by National Science Foundation grants MCS-81-16522,
MCS-83-01213 and DMC-85-04308.

33



34 FAN R. K. CHUNG, F. T. LEIGHTON AND A. L. ROSENBERG

by specific d-valent graphs. For example, every n-vertex (d > 2)-valent graph can be
embedded in a book with min (n/2, O(dn/2)) pages (graphs of valence d <_-2 require
only one page); and there exist such graphs that cannot be embedded in fewer than
O(n/2-/d/log2 n) pages. (All logarithms are to the base 2.)

(3) We find optimal or near-optimal embeddings of a variety of families of graphs,
including trees, grids, X-trees, cyclic shifters, permutation networks, and complete
graphs. For example, every n-vertex d-ary tree can be embedded in a book having
one page, of width [d/2 log n.

(4) We exhibit two instances of a tradeotI between the number of pages and the
widths of the pages. For example, every one-page embedding of the depth-n "ladder"
graph requires width n/2, but there are width-2 two-page embeddings for this graph.

1.2. The origins of the problem. The problem has several origins.
Sorting with parallel stacks. Even and Itai 10] and Tarjan [24] study the problem

of how to realize fixed permutations of {1,..., n} with noncommunicating stacks.
Initially each number is PUSHed, in the order 1 to n, onto any one of the stacks. After
all the numbers are on stacks, the stacks are POPped to form the permutation. One
can view this problem graph-theoretically as follows. Say we are studying permutations
of {1,. ., n}. Then consider the bipartite graph Gn with vertices
{a,. , an, bl," ", bn} and edges connecting each ai to hi. The problem of realizing
the permutation r on {1,. ., n} with k parallel stacks is equivalent to embedding Gn
in a k-page book, with its vertices embedded in the order a,. ,

Single-row routing. In an attempt to simplify the problem of routing multilayer
printed circuit boards (PCBs), So [22] decomposed the problem in the following way.
In his variant, one arranges the circuit elements in a regular grid, with wiring channels
separating rows and columns of elements. One then decomposes the circuit’s net lists
(possibly by adding new dummy elements) so that every net connects elements in a
single row or in a single column. The PCB can now be routed by routing each of its
rows and each of its columns independently. The variant of this scenario that does
not allow a net to run from the top of a row around to its bottom nor to change layers
en route [20] corresponds directly to our embedding problem applied to small-valence
graphs.

Fault-tolerant processor arrays. The DIOGENES approach to the design of fault-
tolerant arrays of identical processing elements (PEs, for short) [7], [21] uses "stacks
of wires" to configure around faulty PEs. In broad terms, the approach works as
follows. The PEs are laid out in a (logical, if not physical) line, with some number of
"bundles" of wires running above the line of PEs. One then scans along the line of
PEs to determine which are faulty and which are fault-free. As each good PE is
encountered, it is hooked into the bundles of wires through a network of switches,
thereby connecting that PE to the fault-free PEs that have already been found and
preparing it for eventual connection to those that will be found. To simplify the
configuration process, each bundle is made to behave like a stack, as illustrated by
the following embedding of a complete depth-d binary tree (see Fig. 1). One uses a
single bundle whose wires are numbered 1,. , d. After determining which of the PEs

FIG. 1. The preorder 1-page layout of the depth-3 complete binary tree.
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are good and which are faulty, one proceeds down the line of PEs from right to left.
As a good PE that is to be a leaf of the tree is encountered, it is connected to line 1
in the bundle, simultaneously having lines 1 through d- 1 "shift up," to "become"
lines 2 through d; switches disconnect the left parts of the lines from the right parts
so that vertex-to-vertex connectivity remains correct. The bundle has thus behaved like
a stack being PUSHed. As a good PE that is to be a nonleaf of the tree is encountered,
it is connected to the stack/bundle in two stages. First it is connected to lines 1 and
2 of the bundle, simultaneously having lines 3 through d "shift down" to "become
lines 1 through d- 2; again switches ensure that proper vertex-to-vertex connectivity
is maintained. The bundle here behaves like a stack being twice POPped. Second, the
PE PUSHes a connection onto the stack. In this scenario, POPs amount to having a
PE adopt two children that lie to its right in the line, while PUSHes amount to having
the PE request to be adopted by some higher level vertex that lies to its left. The
process just described lays the tree out in preorder and, hence, uses at most d lines.

Although not directly related to the research in this paper, the following relation-
ship to Turing-machine graphs is also of interest.

Turing-machine graphs. One can construct a T-vertex graph that "models" a given
T-step Turing machine computation, as follows. Each vertex of the graph corresponds
to a step of the computation; vertices tl and t2 are adjacent in the graph just if one
of the machine’s tape heads visits the same tape square at times tl and t2, but at no
intervening time. One can easily show that every k-tape Turing-machine graph is
embeddable in a 2k-page book. Hence, a characterization ofgraphs that are embeddable
in books with a given number of pages might have applications to complexity theory.
For example, a proof that such graphs have small bisection width would lead to several
interesting complexity-theoretic results.

1.3. Additional formulations. Our perusal of the origins of the problem affords us
additional formulations with which to hone our intuition.

Formulation 2. To place the vertices of G in a line and to assign its edges to
stacks in such a way that the stacks can be used to lay out the edges.

Formulation 3. To embed the graph G so that its vertices lie on a circle and its
edges are chords of the circle; to assign the chords to layers so that edges/chords on
the same layer do not cross.

Formulation 3 combines the insights of 10] and [22], and yields a simple charac-
terization of the 1-page embeddable graphs.

THEOREM 1.1 [3]. A graph can be embedded in a one-page book if, and only if, it
is outerplanar.

Proof sketch. A graph G is outerplanar just when its vertices can be placed on a
circle so that its edges become noncrossing chords of the circle.

If G is outerplanar and is laid out on a circle as above, then cutting the circle
between any two vertices and opening it out to form a line yields a one-page embedding
of G.

Conversely, given a one-page embedding of G, passing a line through the vertices
of G in their order in the embedding and joining the ends of the line together to form
a circle demonstrates G’s outerplanarity. [q

This characterization suggests yet another formulation.
Formulation 4. To decompose G into outerplanar graphs all ofwhose outerplanar-

ity is witnessed by the same embedding of G’s vertices.

1.4. Reflections from the facets. The many formulations of our problem suggest
at least two variants: the first assumes that the layout of the vertices is fixed (as in
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sorting with parallel stacks and single-row routing); the second leaves the arrangement
of the vertices as part of the problem (as in the construction of fault-tolerant processor
arrays). We focus in this paper on the harder version of the problem, in which the
placement of the vertices is not given.

The many facets of our problem further allow us to draw on results obtained in
a variety of contexts.

The first result follows from Tarjan’s analysis of the number of stacks that are
required to compute a given permutation of {1,. ., n}. We translate the result to our
graph-theoretic setting.

THEOREM 1.2 [24]. Let the graph G have vertices {a,..., a,, b,..., b} and
edges connecting each a to b. Let 7r and 71"2 be permutations of {1,..., n}. Let the
vertices of G be placed in a line in the order ar(1),""", a(n), brE(n),""", br2(1). The
number ofpages needed to embed G given this placement of its vertices is precisely the
length of the longest sequence of b-vertices whose indices are similarly ordered with their
a-mates.

The next result is immediate from the following important observation by Even
and Itai [10]" The problem

To minimize the number of pages required to embed a graph G in a book, when
the ordering of G’s vertices along the spine of the book is prespecified

is equivalent to the problem

To find a minimum vertex-coloring for a circle graph (which is the intersection-
graph for chords of a circle).

The correspondence between the two problems is best seen from Formulation 3 of the
book-embedding problem. Garey et al. [13] show that the coloring problem for circle
graphs is NP-complete.

THEOREM 1.3 [10], [13]. The following problem is NP-complete" Given a graph G,
an ordering ofthe vertices ofG, and an integer k, decide whether or not G can be embedded
in a k-page book when its vertices are placed along the spine of the book in the specified
order.

See 1] for a related result.

2. Sample embeddings and helpful principles. The problems of embedding small-
valence graphs and of analyzing given embeddings are harder than they seem at first.
In order to help the reader develop intuition for the remaining sections, we now present
helpful strategies for obtaining bounds, and we illustrate them with sample embeddings
and their analyses.

2.1. An embedding strategy. Formulation 3 of our problem suggests a strategy for
embedding graphs in books, that is valuable both in finding and describing embeddings.
In order to embed the graph G in a book, the strategy advocates"

1. embedding the vertices of G in a circle by finding a hamiltonian cycle in G or
in some edge-augmentation of G (that is, a graph obtained from G by adding zero or
more new edges);

2. assigning the edges of G (which are easily transformed into chords of the
circle) to pages in some noncrossing manner, perhaps by coloring the vertices of the
associated circle graph.

Reinforcing the intuition behind this heuristic is the fact that hamiltonian cycles
add virtually no cost to an embedding: a cycle adds only 1 to the cutwidth of a layout
(since one snips it), and it does not interfere with any other edges, so it does not
increase the pagenumber of the embedding.
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2.2. Two strategies for lower bounds. The first strategy for bounding pagenumber
from below resides in the following result, which follows from Theorem 4.1 (q.v.).

THEOREM 2.1. If the graph G is not planar, then it cannot be embedded in fewer
than three pages.

The second bounding strategy revolves around the properties of matching graphs.
For our purposes a matching graph is a regular univalent graph (hence has an even
number of vertices). If we view a matching graph as being bipartite, we can naturally
associate with it a permutation r: the graph’s "input" vertices are labelled 1,..., n
and are connected, respectively, to "output" vertices ,r(1),. , 7r(n). We shall encoun-
ter situations when analyzing a specific layout or a class of layouts of a graph G
wherein we can assert that G must contain as a subgraph a matching graph G* such
that

1. the input vertices of G* all lie to one side of its output vertices;
2. the input and output vertices of G* are similarly ordered, in the sense that, if

the inputs are laid out in the order Vl, v2, , v,, then the outputs appear in the order
r(v,), ,r(v), , ,r(v.).

When the existence of such a * can be established, we can infer that this (class
of) embedding(s) of requires n pages. The reasoning leading to this conclusion
bears a strong kinship with the reasoning that Tarjan [24] and Even and Itai 10] used
when studying sequences of integers that can be sorted using n stacks.

The lower bounds we obtain via matching subgraphs are among the best we derive
in the paper.

2.3. Sample embeddings.
2.3.1. The pinwheel graph. The embeddings we shall be presenting in the course

of our study will bear out the value of the hamiltonian-cycle embedding strategy. The
following example illustrates how careful one must be to search for a good hamiltonian
cycle.

The depth-n pinwheel graph P(n) has 2n vertices

{al, a2, a,,}
and

{bl,b2,"’,bn}
and edges connecting each pair of vertices of the form

ai- bi, 1 <- <- n,

ai bn-i+l 1 <-- <--_ n,

a ai+l, 1 --<_ < n,

bi- bi+l, 1 <= < n.

See Fig. 2.

FIG. 2. The depth-8 pinwheel graph P(8).
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When n > 2, the graph P(n) is not planar: P(3) K3, We shall see in 4 (Theorem
4.1) that this nonplanarity precludes P(n)’s being embedded in fewer than three pages.
Can one do this well? The obvious hamiltonian cycle--that goes "down the a’s and
up the b’s"--leads to an embedding using roughly n pages, one of width proportional
to n. However, if one studies the structure of pinwheels more carefully, then one
discovers a hamiltonian cycle that leads to a 3-page embedding for P(n), independent
of n, in which the three pages have widths 2, 4, and 4, respectively.

PROPOSITION 2.2. The graph P(n) is 3-page embeddable in such a way that one
page has width 2 and the other two have width 4 each.

Proof. The embedding. One obtains the desired cycle by rearranging the "butter-
flies" that comprise P(n), as follows. We use asterisks to divide the cycle into segments
that facilitate the analysis of the induced embedding. Assume for simplicity that n is
even.

a b a b bn_ a,,_ b a * a3- b3- an-2- bn_2- bn_3 an-3 b4- a4- *

* an bn/2_ an bn/2+2-bn/2+ an bn/2 an

Each segment of the cycle comprises two adjacent butterflies, the second recorded in
reverse order of the first. Let us linearize the vertices of P(n) by snipping the cycle
between al and a,/2, as suggested by the way we have written the cycle.

The analysis. For each segment, we need one width-2 page to hold the butterfly
edges. A second, width-4, page suffices to hold the edges that connect any single pair
of adjacent butterflies. But, if this page is used for the edges that connect the ith and
(i/ 1)th butterflies, it cannot also hold the edges between the (i + 1)th and (i/ 2)th
butterflies; for this next pair we need yet a third width-4 page. We need no additional
pages, since the latter two can alternate joining up adjacent butterflies. Thus the cycle
we have presented leads to a layout with the claimed efficiency.

2.3.2. The sum of triangles graph. The next graph we look at is interesting because
of the techniques that are needed to analyze and bound the efficiency of its embeddings.
In particular, it will afford our first use of matching subgraphs to obtain a lower bound
on pagenumber.

The depth-n sum of triangles graph T( n) has vertices

{ai, bi, ci: 1 <-_ <- n}

and edges connecting each triple ai, bi, c into a triangle.
THEOREM 2.3. The graph T(n) is 1-page embeddable, with width 2. However, if

one insists that T( n be laid out "by columns", so that the vertices {a} are all contiguous,
and so are the vertices {b} and the vertices {c}, then T(n) is 3 HI/a-page embeddable,
and this is optimal, within a factor of 3.

Proofi The unrestricted layout of T(n) being obvious (triangle by triangle), we
restrict attention to layouts of T(n) that keep all the a-vertices, all the b-vertices, and
all the c-vertices contiguous, so we can refer with no ambiguity to the a-block of
vertices, the b-block, and the c-block. We shall henceforth assume such a layout without
further explicit mention. We shall also assume, for simplicity, that n is a perfect
cube.

One of the referees has found a 3-page embedding of P(n) with pagewidths 4, 3, and 1, respectively.
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The upper bound. Begin with each of the blocks of vertices in order: the a-block
lies in the order

the b-block lies in the order

and the c-block lies in the order

Partition each ofthese blocks into n

al,a2," ",an,

bl, b2," bn,

c1, c2, Cn.

1/3 segments, each segment being further subdivided
into n 1/3 runs of 81/3 vertices each. Each block thus has the form:

(R1""" gd)(gd+l’’" Re)’’’ (Ry+l""" gg),

where runs are grouped by parentheses into segments. To this point, corresponding
runs in corresponding segments are similarly ordered in each block.

Now begin rearranging the vertices within blocks as follows. Assume without loss
of generality that the a-block lies to the left of the b-block, which lies to the left of
the c-block.

(a) Leave the a-block as is.
(b) Rearrange the b-block by reversing the order of its segments, and reversing

the order of the runs within each segment (but keeping vertices within runs in order,
as before). The block will now look like"

(gg... Ry+I)’’’ (Re’’’ ga+l)(gd’’" gl).

(c) Rearrange the c-block by reversing the order of the runs in each segment and
reversing the order of vertices within each run (but keeping the original order of the
segments). If we let R denote the run obtained by reversing the vertices of the run R,
then the block will now look like"

(Rd’’" gl)(Re""" gd+l)’’’(Rg’’" Ry+I).

Now let us add in the edges of T(n) and keep track of how many pages we can
get by with. When we add the edges that connect the a-block to the b-block, we note
that a single page will accommodate one edge from each a-run to its corresponding
b-run; since each a-run emits n 1/3 edges to the b-block, we need only this many pages
to realize the a-to-b edges. When we add the edges that connect the b-block to the
c-block, we note that a single page will accommodate the edges from one b-run per
segment to its corresponding c-run; since there are n 1/3 runs per segment, we need
only this many pages to realize the b-to-c edges. When we add the edges that connect
the a-block to the c-block, we note that a single page will accommodate all the edges
from one a-segment to its corresponding c-segment. Since there are only//1/3 segments
per block, we need only this many pages to implement the a-to-c edges. We have thus
used 3n 1/3 pages to implement all of T(n)’s edges.

The lower bound. Without loss of generality, say that we have T(//) laid out in
an a-block, a b-block, and a c-block, in that order. If we concentrate on any pair of
blocks, we have a subgraph of T(n) that is a matching graph whose "inputs" and
"outputs" are laid out disjointly. Using the obvious correspondence between similarly
(resp., oppositely) ordered inputs and outputs on the one hand, and increasing (resp.,
decreasing) subsequences of an integer sequence on the other hand, we note the
following variant of a well-known result of Erdos and Szekeres [9].
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LEMMA 2.4 [9]. Let A and B be orderings of the integers {1, 2,. , n}. Ifsequences
A and B share no similarly ordered subsequence of length greater than k, then they share
an oppositely ordered subsequence of length at least n k.

Now assume for contradiction that our layout of T(n) requires fewer than n
pages. As we have noted in 2.2, this implies that the a-block and the b-block share
no similarly ordered subsequence of vertices of length as great as n /3. By Lemma 2.4,
therefore, these blocks must share an oppositely ordered subsequence of length greater
than n2/3. Look now at the length-n/3 subsequence of the c-block that corresponds
to the oppositely ordered subsequence of the a-block and the b-block. By Lemma 2.4,
this subsequence of the c-block must share with the corresponding subsequence of the
a-block either a similarly ordered subsequence of length

(n2/3)1/2 hi

or an oppositely ordered subsequence of the same length. In the former case, the edges
between the a-block and the c-block cannot be realized with fewer than n 1/3 pages;
in the latter case, the edges between the b-block and the c-block require this many
pages. This contradicts our assumption that fewer than n/3 pages suffices to realize
the layout of T(n). lq

3. Specific efficient layouts. Our attention to this point has been on establishing
general analysis techniques and bounds. We now turn to the task of finding efficient
layouts of a number of familiar graph families. We shall find in 4 that these families
have much more modest pagenumber demands than random graphs.

3.1. Trees. In 1.2 we presented an embedding of the complete binary tree that
turns out to be optimal in both pagenumber (one) and pagewidth (log n). (Optimality
of width follows from [5].) It is not hard to show that all trees enjoy embeddings that
are approximately as efficient as those of complete trees.

PROPOSITION 3.1. Every n-vertex d-ary tree can be embedded in one page of width
at most

Proofsketch. Let G be a graph. One adds a fringe to a vertex v of G by appending
to v a line of (possibly 0) vertices"

Dr, r >- O.

A fringing of G is a graph obtained by adding a fringe to each vertex of G.
Concentrate on a single vertex v of G. Say that when G is laid out, v is flanked

(one or bothby vertices u and w. Let v have two fringes, v, ", Vr and v," ", v
of which may be empty). Lay the fringes out either in the indicated order between v
and w or in reverse order between u and v. To choose the side of v" place the first
fringe on that side of v where the fewest edges of G cross or meet v (as in the
conventional definition of cutwidth); place the second fringe using the same criterion
in the now-augmented embedding. This strategy increases the cumulative width of the
embedding by at most 1, while leaving the number of pages (one) unchanged.

An easy induction verifies that any d-ary tree T can be "built" by levels, by starting
with a single vertex and "double"-fringing the graph at most

/o 3/2/
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times. Our bounds on pagewidth follow from this method of constructing the tree and
from the fact that the tree has at most n- 1 edges. Details are left to the reader. [q

Proposition 3.1 seeks to optimize the worst-case tree embedding. Dolev and Trickey
[8] present an algorithm for finding a width-optimal one-page embedding for an
individual tree.

3.2. Square grids. Square grids are planar and subhamiltonian, hence 2-page
embeddable. (We verify this claim in Theorem 4.1.) The augmented hamiltonian cycle
formed by row-by-row alternated east-to-west and west-to-east sweeps, as indicated in
Fig. 3(a), leads to the 2-page embedding shown in Fig. 3(b). This embedding is optimal
both in number of pages--the grid is not outerplanarnand in the cumulative width
of the pages--the n x n grid has minimum bisection width n.

PROPOSITION 3.2. The n x n square grid admits a 2-page embedding, each page of
width n. This embedding is optimal in pagenumber and is within a factor of 2 of optimal
in pagewidth.

3.3. X-Trees. The depth-d X-tree X(d) is the edge augmentation of the depth-d
complete binary tree that adds edges going across each level of the tree in left-to-right
order (see Fig. 4(a)).

X-trees are planar and subhamiltonian, hence admit 2-page embeddings. While
it is easy to find a 2-page embedding for X(d)--the cycle that runs across levels in
alternating orders yields one suchnit is difficult to find one that has width o(n) (where
/1 2a 1 is the number of vertices in X(d)), despite the fact that X(d) has a bisector
of size d. However, the edge-augmentation of the X-tree depicted in Fig. 4(a), with

(b)

PAGE

PAGE 2

FIG. 3. (a) The 4 x 4 grid and its efficient hamiltonian cycle. (In all the figures, the edges added to create

an efficient cycle are shown as dotted lines; the graph edges comprising the cycles are thickened.) (b) The 2-page
layout of the grid induced by the cycle.
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(0) .... "’"

(b)

FIG. 4. (a) An edge-augmentation of the depth-4 X-tree and an efficient hamiltonian cycle. (b) The layout
of the X-tree induced by the cycle of (a).

the indicated hamiltonian cycle, leads to the width-O(d) 2-page embedding of X(d)
depicted in Fig. 4(b).

PROPOSITION 3.3. The depth-d X-tree admits a 2-page embedding, with one page
of width 2d and one of width 3d. This embedding is optimal in pagenumber and is within
a factor of 5 of optimal in cumulative pagewidth.

Proof. Optimality in number of pages is immediate since X(d) is not outerplanar
for d >-3. The (near-) optimality of the claimed cutwidth follows from the proof in
[17] that X(d) has no bisector of size less than d, coupled with the demonstration
that this implies a similar bound on cutwidth.

It remains only to verify that the widths of the pages in the prescribed embedding
do indeed satisfy the claimed bounds. The verification proceeds by induction, but
requires some detail about the layout of X(d). Say that we have a 2-page embedding
of X(d-1) with the claimed pagewidths and the following form. We depict the
embedding schematically by its linearization of X(d)’s vertices, together with a few
relevant edges. For simplicity we draw page 1 above the line of vertices and page 2
below the line.

LAYOUT

Here r, s, are, respectively, the root of X(d- 1) and its left and right sons; a and/3
are the strings comprising the rest of X(d- 1)’s vertices. Assume for induction that
in Layout 1"
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(1) the left spine vertices (which are the leftmost vertices at each level) of X(d 1)
appear consecutively in leaf-to-root order in a;

(2) the right spine vertices (which are the rightmost vertices at each level) appear,
not necessarily consecutively, in root-to-leaf order in/3;

(3) the vertices r, s, and all of the left and right spine vertices are exposed on
page 2, in the sense that no edge of X(d 1) passes totally over them (i.e., under them
in the picture);

(4) the width of page 1 is at most 2d- 2;
(5) the width of page 2 is 0 below the left spine vertices, and is less than 3k-3

to the right of the level-(d- k-1) spine vertices.
Now take a second copy of Layout 1:

LAYOUT 2

The prescribed layout of X(d)mwhose set of vertices is just the union of the sets of
vertices of its two depth-(d- 1) sub-X-trees, in addition to r*, its root vertexmis
obtained from the indicated layouts as follows:

cesrrr#tflct # s# #

LAYOUT 3

A careful analysis of the composite layout extends the induction: Conditions (1), (2)
are immediate since the left (resp., right) spine of X(d) is contained in the string asr
(resp., the string r# #/3#), whose order is inherited from Layout 1 (resp., from Layout
2). Condition (3) is clear from the depiction of Layout 3: no edges are placed in the
forbidden regions. Conditions (4), (5) are verified by simple counting.

Analysis of small X-trees establishes the base of the induction, thereby completing
the proof. [q

3.4. Benes permutation networks and their relatives. We now consider families of
graphs whose structure is materially more complicated than the ones we have considered
so far. These families are all very similar in structure and arise in a variety of contexts.
They include the FFTnetworks whose structure represents the computational dependen-
cies in the Fast Fourier Transform algorithm, Banyan networks whose structure approxi-
mates that of the Boolean n-cube while retaining bounded vertex-degrees, and the
Benes rearrangeable permutation network [2], which is shown in Fig. 5(a). We concen-
trate on the Benes network, since it is a supergraph of the others, hence the hardest
of the group to embed efficiently.

Let n be a power of 2. The n-input Benes network B(n) is the graph defined
inductively as follows.

1. B(2) is the complete bipartite graph K2,2 on two input vertices il, and i,2 and
two output vertices Ol, and o1,.
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(o)
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(b)

PAGES , 5, 6

PAGES 2,3, 4

FIG. 5. (a) The 4-input Benes network. (b) A 6-page layout of two levels of the network.

2. B(n) is obtained by taking two copies of B(n/2) as well as n new input vertices,
in, l, in,2, in, and n new output vertices, on,i, On,E, ", On, For each 1 _-< k _-< n, one
adds edges that create one copy of K2,2 with "inputs" in,k and in,k+n/2 and "outputs"
ink and i’,/2,k (the primed vertices coming from the second of the two copies of
B(n/2)) and one copy of K2, with "inputs" On/,k and On/2,k and "outputs" On,k and
On,k+,/ (again, primed vertices come from the second copy of B(n/2)).

Benes networks and their relatives are nonplanar, so they require at least three
pages. Games [12] has recently discovered an elegant embedding that achieves this
pagenumber. In order to illustrate a strategy that is often useful for finding good book
embeddings, we describe now a simple 6-page embedding, which is built upon the
hamiltonian cycle that alternates running up and down the "columns" of inputs ar,d

outputs of B(n); see Fig. 5(b). In this embedding, one uses three pages to realize the
"butterflies" that connect each "column" of vertices to the next "column." The fact
that the embedding uses only a bounded number of pages is due to its reusing pages
as it proceeds down the columns of B(n). This strategy of reusing independent pages
is a central feature of efficient embeddings (cf. [6], 15], [29]). It is somewhat surprising
that any graph capable of "computing" all permutations can be realized with any
bounded number, let alone 3, of pages.

PROPOSITION 3.4 [12]. The Benes network B(n) admits a 3-page embedding, with
each page having width n. This embedding is optimal in pagenumber and within a factor
of 3 of optimal in pagewidth.

3.5. The Boolean n-cube. Our next family of graphs also has a rich interconnection
structure which follows the communication structure of a broad class of algorithms.
This family has been proposed as a desirable network architecture for a highly parallel
computer; indeed, many of the other networks discussed in the literaturemthe shuffle-
exchange, the banyan, and the cube-connected-cycles, for example--arose as bounded-
valence stand-ins for our next graph. The Boolean n-cube C(n) has as vertices the set
of all binary strings of length n. The edges of C(n) connect string-vertices x and y
just when x and y are unit Hamming distance apart, i.e., when there exist binary strings
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c,/3, of collective length n- 1, such that

{x, y}= {aOfl, tlfl}.

Thus C(n) has 2" vertices and n2"-1 edges. Since C(n) is hard to visualize for n > 3,
its efficient embedding is more easily described inductively in string-oriented terms,
rather than via a hamiltonian cycle.

PROPOSITION 3.5. The graph C(n) (n->2) admits an (n-1)-page embedding, with
one page of width 2 for each 1 <-_i <- n- 1. This embedding is within a factor of 2 of
optimal in both pagenumber and cumulative pagewidth.

Proof. The lower bound on pagenumber is immediate from the facts that
(a) the pagenumber of C(n) is at least as big as the minimum number of

outerplanar graphs into which C(n) can be decomposed (Theorem 1.1);
(b) an N-vertex outerplanar graph can have at most N "noncircle" edges [23];
(c) C(n) has n2n-=(1/2)N log N edges.

The lower bound on cumulative pagewidth follows from the easily derived fact that
C(n) has minimum bisection width 2n-1.

The upper bound is seen easily by describing inductively the linearization of the
vertices of C(n).

The vertices of C(2) are laid out as follows:

00 01 11 10

hence C(2) is embeddable in one width-2 page.
Assume that C(n) is realized with n-1 pages of widths 2, 4,..., 2"-1, via the
linearization

where each fli is a distinct length-n binary word. Then the following layout for
C(n+l):

0102 0fin lflN" lflElfl
is realizable with just one more page, of width N. This extends the induction
and completes the proof. [3

3.6. The complete graph -Kn. Finally, we analyze the complete graph on n vertices,
Kn, in which every pair of vertices is adjacent. To simplify our analysis, without losing
any of the germane ideas, let us assume that n is even.

PROPOSITION 3.6. The complete graph K, is embeddable in n/2 pages, each ofwidth
at most n. This embedding is optimal in pagenumber and in cumulative pagewidth.

Proof. We establish the claims in reverse order.
Optimality in cumulative pagewidth is immediate since, by symmetry, all layouts

of Kn have the same cutwidth.
Optimality in number of pages is deducible from our principle about matching

subgraphs. Lay the vertices of K, out on a line; call the vertices 0, 1,..., n-1 in
left-to-right order. Note that K, contains as a subgraph the matching graph M, whose
input vertices are 0, 1,. ., (n/2)-1, and whose output vertices are given by: 7r(v)=
v / n/2 for 0_-< v < n/2. Since the inputs and outputs of Mn are similarly ordered in
this embedding, this embedding requires n/2 pages. Since all embeddings of Kn are
isomorphic, the bound on pagenumber follows.

To see the upper bounds, consider the following way to lay out K,. Place the
vertices 0, 1,..., n-1 evenly spaced on a circle. For each vertex v, 0<-_ v<n/2, draw
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the line-graph Lv as indicated in the following illustration, in which all arithmetic is
modulo n and in which double dashes denote edges of the line:

v= v+ 1 v-1 v+2= v-2 v+(n/2)-I v-(n/2)+l v+(n/2).

It is not hard to verify the following facts.
(1) Each such line is composed of noncrossing chords of the circle; hence, by

Theorem 1.1, each is embeddable on a single page.
(2) Every edge of K, appears in precisely one line: to verify this, note that each

vertex w is an endpoint of (hence, has valence 1 in) precisely one line, namely, Lw mod n/2

and has valence 2 in all other lines, so that in all, n- 1 edges leave w; moreover, no
two lines share an edge since, in the circle picture, all the lines emanating from vertex
w have different slopes.
These two facts establish that, if one snips the circle between any two vertices, thereby
laying Kn out in a line, and if one colors the edges of Kn according to which line Lv
they lie in, one obtains an embedding of Kn in an n/2-page book. By the symmetry
of K,, this embedding has optimal cumulative pagewidth. U

3.7. The mesh of cliques. The n x n mesh of cliques M(n) is the graph whose
vertex-set is {1,2,...,n}x{1,2,...,n} and whose edges connect each row {i}x
{1,2,..., n} into an n-vertex clique and each column {1,2,..., n}x{i} into an
n-vertex clique. While we do not know how efficiently M(n) can be embedded in a
book in general, we can show that any embedding that places M(n)’s vertices along
the spine row by row must use tl

4/3 pages. The proof follows the inspiration of Theorem
2.3; details are left to the reader. Any nontrivial bound (particularly a lower bound)
on the pagenumber of M(n) would be interesting.

As a closing note to this section, Muder [18] and West [30] have a number of
nontrivial bounds on the pagenumber of complete bipartite graphs K,,,, that improve
our results in [7].

4. Graph structure and pagenumber. In this section, we look at certain structural
features of a graph, that are related to the number of pages required to embed the
graph in a book. We find certain unexpected effects as well as the absence of certain
expected ones.

4.1. Planarity. Theorem 1.1 indicates that the outerplanarity of a graph has a
material effect on its pagenumber. It is easy to show that planarity has a not-dissimilar
effect, but only when it is accompanied by a second structural property.

THEOREM 4.1 [3]. The graph G admits a 2-page embedding if, and only if, it is

subhamiltonian, i.e., a subgraph of a planar hamiltonian graph.
Proof sketch. A graph is subhamiltonian just if it is embeddable in the plane so

that (1) its vertices lie on a circle; (2) each of its edges lies either totally within the
circle or totally without it; and (3) no edges cross in the layout.

Given such a "circular" embedding of a subhamiltonian graph G, cutting the
circle between any two of G’s vertices yields a planar embedding of G in a line, with
each edge lying either totally above the line (i.e., on page 1) or totally below it (i.e.,
on page 2).

Conversely, given a 2-page embedding of the graph G, we view this embedding
as placing G in a line with each edge lying totally above the line (page 1) or totally
below it (page 2), and with no edges crossing. Pasting together the ends of the line
containing G’s vertices yields a "circular" embedding of G that witnesses G’s subhamil-
tonian planarity. [3
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In the several years since the appearance of [3], the question of how many pages
an arbitrary planar graph requires has attracted considerable attention. Buss and Shor
[6] were the first to demonstrate that planar graphs can be embedded in a bounded
number of pages; their elegant layout technique embeds an arbitrary planar graph in
9 pages. Heath [15], [16] used a quite different technique that improves this bound to
7 pages. Yannakakis [29] has recently settled the issue by proving coincident upper
and lower bounds of 4 pages.

THEOREM 4.2 [29]. Every planar graph admits a 4-page embedding. Moreover, there
exist planar graphs requiring 4 pages.

Returning to the consequences ofTheorem 4.1, we observe that every series-parallel
graph is 2-page embeddable. The class of series-parallel graphs is defined inductively
as follows.

1. The 2-vertex graph with one source vertex s adjacent to one target vertex is
a series-parallel graph.

2. If G is a series-parallel graph with source vertex s and target vertex and if
G’ is a series-parallel graph with source vertex s’ and target vertex t’, then the graph
G" obtained by "identifying" vertices and s’ is a series-parallel graph with source
vertex s and target vertex t’. (This is an example of "series composition.")

3. If G1,’’’, G, are series parallel graphs with source vertices Sl,’", s, and
target vertices tl," ", t,, respectively, then the graph G* obtained by: taking a new
source vertex s and adding edges between s and each of the si; and taking a new target
vertex and adding edges between and each of the ti is a series-parallel graph with
source vertex s and target vertex t. (This is an example of "parallel composition.")

A graph is series-parallel just when its being so follows from provisos 1-3.
PROPOSITION 4.3. Every series-parallel graph is 2-page embeddable.
Proof It is clear that every series-parallel graph is planar. By Theorem 4.1, then,

we need only show that each such graph is subhamiltonian. This is easily proved by
induction on the number of vertices in the graph, using the following inductive
hypothesis.

Given a series-parallel graph G with source vertex s and target vertex t, there is
a planar edge-augmentation of G that has a hamiltonian path starting at s and
ending at t.

The indicated path can then be completed to a cycle by an edge from to s, without
endangering planarity, thus establishing that the graph is subhamiltonian.

We sketch the easy induction. (1) Trivially, the unique 2-vertex series-parallel
graph satisfies the claim. (2) If the graphs G and G’ with source vertices s and s’ and
target vertices and t’ each satisfies the claim, then so also does their series composition:
the desired hamiltonian path goes from s through G to t, which is identified with s’,
and thence through G’ to t’. (3) If the graphs G,..., G, are series-parallel, with
source vertices s,. , s, and target vertices tl," tn, then the parallel composition
of the graphs satisfies the claim: the desired hamiltonian path goes from s to s, thence
through G1 to tl, to $2, thence through G to t2," ", from tn-1 to Sn, thence through
G, to t,, and finally to t. Details are left to the reader. [3

The final corollary of Theorem 4.1 is a direct consequence of Wigderson’s result
that the problem of deciding whether or not a maximal planar graph is hamiltonian
is NP-complete [28].

COROLLARY 4.4. The problem of deciding 2-page embeddability is NP-complete.

4.2. Bisection width. The next structural property we consider measures the ease
of recursively cutting a graph into two equal size subgraphs. We find that this measure
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yields a nontrivial upper bound on pagenumber but does not provide any nontrivial
lower bound.

For our purposes, the simplest measure of the ease of bisecting a graph resides
in the Bhatt-Leighton [4] notion of bifurcator: The graph G has a p-bifurcator of size
B (B an integer and p> 1) either if G has fewer than B edges or if G admits a
decomposition tree with the following property. The root of the tree (which is the sole
vertex at level 0 of the tree) is the graph G. Each graph H at level k >_-0 of the tree
that has more than one vertex gives rise to two disjoint graphs at level k + 1, having
the following properties: (a) each graph contains at least one vertex; (b) their union
is H; and (c) each is connected to the other by no more than Bp-k edges.

THEOREM 4.5. If the graph G has a p-bifurcator of size B, then it is embeddable in
(p/(p- 1))B pages.

Proof. Let G have a p-bifurcator of size B. One begins the process of embedding
G in a book by forming G’s decomposition tree. One now lays G’s vertices in a line
(which will be the spine of the book) in the same order in which they appear as leaves
of the decomposition tree. One assigns edges to pages as follows. At each level k of
the tree, one creates Bp-k new pages. One proceeds through all of the subgraphs of
G that are split at that level, and one assigns one "cut" edge from each such subgraph
to each of the new pages. No crossings can be introduced by such an assignment
strategy since (a) edges that belong to the same level-k subgraph are assigned to
different pages, and (b) edges that are assigned to the same page belong to disjoint
intervals of vertices (because of the way vertices were laid out in the spine). It remains
only to count the number of pages used in the embedding. This number is clearly
bounded above by

k_O

An immediate corollary of this result is that every small-degree n-vertex planar
graph is embeddable in O(n/) pages. This was the best upper bound known before
the work of Buss and Shor [6], Heath [15], [16], and Yannakakis [29].

Theorem 4.5 indicates that the size of a graph’s bifurcator places a nontrivial
upper bound on the number of pages it requires. For the most part, this does not work
in the other direction. By Theorem 4.1, every n-vertex 2-page embeddable graph has
a 2/-bifurcator of size O(n/), but once we get to 3-page embeddable graphs,
knowledge of a graph’s pagenumber no longer yields a nontrivial bound on the size
of its bifurcators.

PROPOSITION 4.6. There exist n-vertex 3-page embeddable graphs whose smallest
p-bifurcators have size f(n/log n) for all p > 1.

Proof. Games [12] has shown that the n-input Benes network can be embedded
in a 3-page book. A straightforward application of Thompson’s lower bound proof
technique [25] shows that every p-bifurcator of the O(n. log n)-vertex 3-page embed-
dable graph B(n) has size (n). l-]

The bound in Proposition 4.6 has recently been strengthened by Galil, Kannan
and Szemeredi 11], but it is still not known whether or not there exist n-vertex 3-page
embeddable graphs whose smallest p-bifurcators have size O(n). As we mentioned in

1.2, showing the existence of such graphs could have interesting consequences in
classical complexity theory.

4.3. Valence. The final structural property we study is the valence of a graph. We
find that this property affords us nontrivial upper and lower bounds on pagenumber.
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These bounds are not very close for small or large valences, but they are close for
moderate-valence graphs.

The graph G has valence d if no vertex of G has degree exceeding d. G is regular
if all its vertices have the same degree.

4.3.1. An upper bound for d-valent graphs.
THEOREM 4.7. Let d be any positive integer, and let e be any positive constant. Say

that G is a d-valent graph with n vertices, where

n> (ln ((d + l)nl/2))
If d <-2, then G is 1-page embeddable. For any values of d and e, G is F(e, d, n)-page
embeddable, where

F(e,d,n) =man [ (1+ e)(2+21/2)(d+ 1)n 1/2]
Proof The cases d _-<2 are simple, for if d 1, G is a matching graph, and if

d -2, G consists of disjoint paths and cycles.
We turn now to the case of arbitrary valence d. Say that we are given an n-vertex

graph G of valence d. We note first that G is embeddable in n/2 pages, since K, is
(Proposition 3.6); hence we need look only at the second term in the expression for
F(e, d, n). We shall justify this term (nonconstructively) by showing that not all
embeddings of G in books can be "bad," in the sense of using too many pages.

We begin by decomposing G into at most d + 1 matching graphs, Go,’", Gd,
each having at most n vertices, by means of an edge-coloring algorithm (this is always
possible by Vizing’s Theorem [26]). Now consider all possible permutations of G’s
vertices (or, equivalently, all possible layouts of the vertices in the spine of a book).

Focus on an arbitrary permutation 7r and on its "behavior" on one of G’s
constituent matching graphs G. Consider those edges of G that connect a vertex in
the left half of the layout with a vertex in the right half; say there are k such edges.
These edges can be viewed (as we have noted earlier) as specifying a permutation on
k integers. Since we have assumed nothing about the layout nor the edges, this
permutation can be viewed as a random permutation on k integers. By a fundamental
result of Hammersley [14, Thm. 6], the fraction of such permutations that have an
increasing sequence of length exceeding kl/+ e(n/2) 1/2 is strictly less than

exp (-2e() 1/2).
This means (as we have noted before, by analogy with work of Tarjan [24]) that at
most this small fraction of the layouts will require as many as (1 + e)(n/2) 1/2 pages to
realize the edges of Gi that connect a vertex in the left half of the layout to a vertex
in the right half (since k -< n/2).

Recall that increasing (resp., decreasing) sequences in a permutation correspond
to similarly ordered (resp., oppositely ordered) sequences of inputs and outputs
of our matching graph. Moreover, one can show via a strengthened analogue of
Lemma 2.4 that the existence of a length-p increasing sequence in a permutation
implies that the permutation can be partitioned into p decreasing sequences. The
residents of each of the pages in the layout are the edges corresponding to one
of these decreasing sequences.
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Now let us remove these edges that connect the two halves of the layout and their
incident vertices. We are left with two (roughly) half-size copies of the same problem.
Moreover, since we have been discussing a matching graph, the relative layout of the
remaining vertices is completely independent of the layout of the vertices that were
removed, so that once again, the permutations induced by the edges can be viewed as
random ones, hence within the purview of Hammersley’s theorem. This means that
when we analyze each of the permutations specified by the edges that connect the left
halves of each of the subgraphs with the right halves, we find that at most the fraction

)
require as many as (1 + e)(n/4) 1/2 pages for their realization. We can now continue in
this fashion to remove edges that have been considered, thereby reducing our concern
to 2 subproblems of size roughly n/2 each, each of which encounters "bad" layouts
with probability less than

We continue generating half-size subproblems until n/2 <-n 1/2, for by that time,
Proposition 3.6 assures us that every layout can be realized within n 1/2 pages (i.e., that
the probability of a layout’s being bad" is 0). It is clear from the foregoing reasoning
that the probability that a random layout requires more than

(1/2) log., (l+e)(n/2i)l/2<=(l+e)(1-1-21/2)nl/2+n1/2
i=1

< (1 + e)(2+ 2’/2)n ’/2

pages to realize one of G’s component matching graphs is less than
(1/2) log

Y 2’-1 exp (-2e(n/2’) 1/2) <-- n 1/2 exp (-enl/4).
i=1

Since G is just the disjoint union of its component matching graphs, it follows
that the probability that a random layout of G’s vertices requires more than

(1 + e)(2 + 21/2)(d + 1)n 1/2

pages to realize all of G’s component matching graphs, hence G itself, is no greater than

(d + 1)n 1/2 exp (-enl/4),
which is less than unity, by the assumed relationship among n, d, and e.

We have thus shown that almost all orderings of G’s vertices result in layouts
using no more than F(e, d, n) pages. [3

Remark. The result of Hammersley that is at the center of the preceding proof
deals with the lengths of monotonic subsequences of permutations. We needed the
result instantiated for increasing subsequences, for this yielded the sought bound on
pagenumber. However, the result can also be instantiated for decreasing sequences,
thereby giving an O(n 1/2) upper bound on pagewidth also. Details are left to the reader.

4.3.2. A construction for trivalent graphs. The (nonconstructive) upper bound of
Theorem 4.7 holds for almost all orderings of the vertices of arbitrary d-valent graphs,
but we do not have a general construction that yields a good ordering. If we restrict
attention to trivalent graphs, then we do have such an explicit construction. We begin
with a special case.
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Let G be a trivalent graph, and let S be the set of its degree-3 vertices. We say
that G is trimmable if G admits a matching whose removal leaves G with at most one
degree-3 vertex.

LEMMA 4.8. Every n-vertex trimmable trivalent graph can be embedded in a (nl/2+
5)-page book, each page having width at most n 1/2.

Proof. Let G be an arbitrary n-vertex trimmable trivalent graph. We shall embed
G in a book via the following series of steps.

1. We remove a matching from G, plus at most one additional edge, in such a
way as to be left with a bivalent subgraph of G: in fact, a set of vertex-disjoint cycles
and paths that include all of G’s vertices. This is possible since G is trimmable. Let
us refer to the removed matching edges as matched edges.

2. We (tentatively) lay G out in a line, cycle/path by cycle/path. Then we reinsert
the removed edges.

3. We partition the linearized version of G into n 1/2 contiguous blocks of n 1/2

vertices each, from left to right. (Assume for simplicity that n is a perfect square.)
4. Our next task is to rearrange our tentative layout so as to achieve the claimed

pagenumber. Note that every block (save possibly one) has at most nl/2+4 edges
leaving it to any other block: at most n 1/2 matching edges and at most 4 emerging
edges that go from the cycles/paths of this block to neighboring blocks. The one
possible exceptional block is the one that had one additional edge removed with the
matching; it could have that additional edge leaving it, too.

We rearrange the vertices in each block, from left to right, in the following way.
For the first block, we sort the vertices in decreasing order of the block numbers to
which their matched edges go. For each subsequent block: (a) we place those vertices
whose matched edges go to leftward blocks to the left of those vertices whose matched
edges go to rightward blocks; (b) we sort the leftgoing vertices in decreasing order of
the block numbers to which their emerging edges go; (c) we sort the rightgoing vertices
analogously; (d) within each group of leftgoing vertices that are going to the same
block, we arrange the vertices in increasing order of the distance from the present
block of their target vertex.

Analysis. The effect of the rearrangements in 4(a)-(d) is that now each of the n 1/2

blocks needs just one page to realize all of its rightgoing matched edges; each of these
pages has width at most n /2. The edges that we have scrambled within each block lie
totally within blocks of size n 1/2 each; hence, we need at most half this many additional
pages to realize them" By Proposition 3.6, m/2 pages, each of width m, can realize
the edges interconnecting any group of m vertices; moreover, since the blocks are
mutually disjoint, we can use the same 1/2n 1/2 pages to realize all of them. The (at most)
4n 1/ emerging edges can be realized using at most 4 new pages: Since we never move
blocks, at most two of these edges connect a block to its right neighbor, and at most
two connect the block to its left neighbor; hence, the only conflicts occur within a
block, and 4 new pages can resolve these conflicts. (Two of the pages used with one
block can be reused in its neighbor block.) Finally, at most one additional page is
necessary, to realize the one non-matched edge of G that we may have had to remove
at the beginning of the embedding. The result follows. [’1

With the help of a crucial observation by Lenny Heath [31], we can extend Lemma
4.8 into a (nl/2+ 6)-page embedding of arbitrary trivalent graphs.

LEMMA 4.9 [31]. Every trivalent graph without cut-edges (i.e., edges whose removal
disconnects the graph) is trimmable.

Proof. If the trivalent graph G has no cut-edges, then every vertex of G has degree
2 or 3. Let us pair up the degree-2 vertices of G and add an edge between each pair.
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This will augment G to a regular trivalent graph, unless G started with an odd number
of bivalent vertices, in which case our pairing leaves us with one unmated degree-2
vertex, call it v. We handle this last contingency as follows. Let u-v-w be a chain in
the augmented G. (If G had fewer than three vertices, it would be univalent.) Replace
v and the edges (u, v) and (v, w) by the single edge (u, w). At this point, in either of
the contingencies, we have augmented G to a regular trivalent graph, possibly having
multiple edges, but definitely having no cut-edges (since G had none). By a well-known
result of Petersen 19], the augmented G has a perfect matching, i.e., a matching whose
removal renders the graph regular bivalent. If we now restore G to its original state
and consider the implications of Petersen’s perfect matching, we verify easily that G
is trimmable. [3

THEOREM 4.10. Every n-vertex trivalent graph can be embedded in a book wzth
(nl/2+6) pages. Each page, save possibly one, will have width at most 2n /2. The
cumulative pagewidth of the embedding will at worst be proportional to n, which cannot
be improved in general.

Proof. Let us be given an arbitrary n-vertex trivalent graph G. By removing all
of G’s cut-edges, we decompose G into subgraphs G1, G2," ", G,,, each having no
cut-edges. By Lemma 4.9, each Gi is trimmable; hence, by Lemma 4.8, each Gi can
be embedded in a (nl/2+ 5)-page book, each page having width at most n /2. Thus,
any embedding of G that lays the Gi out disjointly along the line has the claimed
efficiency. To prove the theorem, then, we need only show how to deal with the removed
cut-edges.

We begin with two easily verified but crucial observations for which we are grateful
to Lenny Heath. First, we note that if we take our layout of one of the Gi and shift
the vertices cyclically, we do not change the pagenumber of the layout, and we at most
double its pagewidth (since our layouts really are in circles, not lines; cf. Theorem
1.1). Second, we note that if we contract each subgraph G to a point, leaving only
the cut-edge interconnections, then the resulting contraction of G is a tree.

Our strategy is to lay G out as a tree of subgraphs, with each subgraph laid out
as in Lemma 4.8, but possibly cyclically shifted.

We begin by arbitrarily picking G1 as the first subgraph to process. We lay G1
out as in Lemma 4.8. Say that in the layout, the vertices

/)11, /)12, /)lk,

appearing in that order, are connected to other subgraphs by cut-edges. We place those
k subgraphs along the line in the reverse order of the v;. When we place each
subgraph, we use the layout prescribed by Lemma 4.8; but we cyclically shift the
vertices in this layout so that the leftmost cut-edge-bearing vertex is the one connected
to Ga. The subgraphs just placed will remain in this order, and their layouts will stay
fixed, but other subgraphs may be placed between them.

Next, we process the just-placed subgraphs recursively, from left to right. (By
"recursively" here we mean the following. If we have subgraphs A and B remaining
to be processed, in that order, and if in the course of processing A we place a new
subgraph C between A and B, then C gets processed before B.) We process subgraph
Gi, i> 1, as follows. Say that in the layout of G the vertices

l)il I)i2, IAiki,

appearing in that order, are connected to other subgraphs by cut-edges. We place those
k subgraphs along the line in the reverse order of the v, immediately to the right of
G (hence, to the left of all other subgraphs that have previously been placed to the
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right of Gi). As before, when we place each subgraph, we use the layout prescribed
by Lemma 4.8; but we cyclically shift the vertices in this layout so that the leftmost
cut-edge-bearing vertex is the one connected to Gi. Again, the subgraphs just placed
will remain in this order, and their layouts will stay fixed, but other subgraphs may
be placed between them.

The reader will recognize that we have essentially laid the contracted tree version
of G out in preorder. By Proposition 3.1, then, we need only one extra page to
accommodate the cut-edges. Since the contracted tree has at most n edges, the extra
page has cutwidth at most n.

We thus have an embedding of G with the parameters advertised in the statement
of the theorem. The cumulative pagewidth of the embedding (which is at worst
proportional to n) cannot be improved in general, as one can verify by observing that
the cutwidth of a trivalent n-superconcentrator must be proportional to n. [3

4.3.3. A lower bound for d-valent graphs. We have been unable to find lower
bounds on the worst-case pagenumber of d-valent graphs that match the upper bounds
of Theorem 4.7 and Theorem 4.10. We have, however, found nontrivial lower bounds,
that we present now.

THEOREM 4.11. For all valences d > 2, for all sufficiently large n, there are n-vertex
graphs of valence d whose pagenumber is no less than

rl
(1/2)-(1/ d)

(const)
log2 n

Proof Let the valence d > 2 of the graphs of interest be fixed. Imagine that we
have a table each of whose rows is labeled with one of the n! permutations of n items
(= layouts of n vertices), and each of whose columns is labeled with one of the n-vertex
matching graphs: the table entry corresponding to row and column j is "FEW" if
layout uses no more than p pages on matching graph j, and is "MANY" if the layout
uses more than p pages. The general strategy of our proof is to demonstrate that if p
is no larger than indicated in the statement of the theorem, then some d-tuple of
columns encounters at least one "MANY" in every row.

In order to get the argument going, we need to know roughly how many rows/per-
mutations/layouts contain a "FEW" for a given column. This information is derivable
from the following lemmas.

LEMMA 4.12. At most p2r permutations of r integers have no increasing sequence of
length p + 1.

Proof We noted in Lemma 2.4 that any permutation of { 1, 2, , r} whose longest
increasing subsequence is oflength p can be partitioned into p decreasing subsequences.
This decomposition can be used to specify the permutation uniquely via two length-r
strings over the alphabet {1, 2,..., p}. The first string specifies, for each position i,
which decreasing sequence occupies that position. The second string assigns the integers
{1,2,..., r} to subsequences. Since there are p2r pairs of length-r strings over
{1, 2,...,p}, the lemma follows. [3

LEMMA 4.13. Let G be an n-vertex matching graph. The number of layouts of G
that use at most p pages does not exceed

P(n, p) 2 E(n’p)

where

n
E (n, p) _-< log n + n. log p + 2n. log log n.
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Proof. Let us count the number of layouts of G that require at most p pages. We
employ the correspondence we have established between matching graphs and permuta-
tions ( 2.2). Consider an arbitrary layout of G that has r edges passing between the
leftmost n/2 vertices of G and the rightmost n/2 vertices; there are obviously no more
than n/2 such edges. Let () denote the binomial coefficient

y!(x-y!"

1. There are at most () ways to choose the r edges that cross the center of the
layout.

2. Each association (= edge) between element and element j in a permutation
can arise because r(i)=j or because -(j)= i; hence there are 2 ways of assigning
left and right halves to each of the r edges.

n/2--r3. There are at most <n/2-r/2J ways to assign edges that do not cross the center
to either the right or the left half of the layout.

4. Since the edges that cross the center can appear in any order, there are r! ways
of ordering the left endpoints of these edges.

5. By Lemma 4.12, no more than p2r of the permutations specified by the r edges
can be realized with only p pages, so there are at most p2 ways of ordering the right
endpoints of the edges that cross the center.

6. There are (n/2) ways to place the (now ordered) endpoints of the r crossing
edges on each side of the layout.

Aggregating all of these possibilities, recursing down to handle the two induced
subgraphs of G to the left and to the right of the center of the layout, and allowing r
to range over its possible values, we end up with the recurrence

( /r ) ((n/2)-r p2 (n/r2)2 [ ( )]2P(n, p)_-</:
n 2

.2" [(n/:Z)-r]/2/’r" P r, p

Our strategy will be to take the largest term T (say that it is the rth term) from this
sum and show that nT, which certainly is no less than P(n, p), is no greater than the
claimed bound. We begin by representing r as

r b, 0 < b <= 1,

and by applying to T standard estimates for the binomial coefficients. We find that

P(n,p)<-nT

_-< exp 2 log n +- H(b) n + + b log b b log e + bn log p

where exp 2(x) =a2, and where H(b) is the base-2 entropy function

H(b)=-[b log b + (1- b) log (l b)].

Let us now assume for induction that our claimed bound

m
E(m, p) _-< - log m + m log p + 2m log log rn
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on E (hence on P) holds for all rn < n. It then follows from the preceding inequalities,
after simplification, that

+ log n- b
n

P(n, p) -< exp 2 log n + H(b) n
2

log e + n log p

+2(1-b)nloglog((1-b))].
Note that the right-hand expression can be shown to be less than

exp 2 log n + n log p + 2n log log n

provided only that for all 0 < b -< 1,

logn () b
H(b)+ <_-2 log log n- 2(1 b) log log (1 b) + log e.

n

We establish this last inequality by verifying that, in fact,

(1) H(b)+log n 2 (_) b
<_-+2b log log + log e.

n log n

This will suffice since

21oglogn-2(1-b) loglog((1-b)-)>21oglogn-2(1-b)loglog(-)
2 log log n -2 log log () +2b log log ()

=21oglogn-21og(logn-1)+2bloglog(-)
>-t-2b log log

log n

Now we must verify the final inequality (1) involving H(b): Using the Taylor’s series
expansion for log (1- b), one can show that

1
H(b) <-b log+ b log e

for all b <_- 1. Hence it suffices to verify that

b log-g+ log e + <_-+2b log log
n log n

This is easily accomplished by analyzing the two cases

b <= (log n)-3/2 and b > (log n) -3/2.

Thus we establish the desired inequality (1) on H(b) and, through it, the desired
inequality on P(n, p).

Return to proof of Theorem 4.11. Consider again our large table with entries
"FEW" and "MANY". The number of "FEW" entries in each (n !-item) column of
the table is at most P(n, p), where/9 is the number of pages we are prepared to use
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to lay out our n-vertex d-valent graphs. Clearly, we cannot lay out all such graphs
unless every d-tuple of table columns contains only "FEW" entries in at least one row
of the table. (The d-tuples of this last assertion arise from the fact that every union
of d matching graphs forms a d-valent graph.) These "FEW" entries have a chance
of existing only if

cd<-n! P(n,P)
c

\ n!

where c denotes the number of n-vertex matching graphs. The left-hand quantity is
the number of d-tuples of matching graphs, while the right-hand quantity is the product
of the number of rows and the number of d-tuples of "FEW" entries in each row.
(The latter fact follows from the observation that, by symmetry, every row has the
same number of "FEW" entries.) Simplifying, then, we can accommodate all d-valent
graphs in p pages only if

P(n,p)d>--(n!)d-1.
By Lemma 4.13, this inequality implies (after taking logarithms)

dn. [1/2 log n + log p + 2 log log n >-- (d 1) n log n + O(n).

The validity of this inequality finally implies the claimed lower bound on p, namely,

Fl
l/2-1/d

p _>- (const)
log2 n

Our upper and lower bounds are within a few logarithmic factors apart when the
valence d is logarithmic in n; they are rather far apart when d is either very big or
very small. We conjecture that one of the factors of log n can be removed in the lower
bound, but the tighter analysis needed is likely to be quite complicated.

5. Cost tradeotfs. In this section, we point out a rather interesting anomaly that
could be important in the context of our study. We describe here two families of graphs
that engender pagenumber-pagewidth tradeoffs. Each of these families can be laid out
using some number p pagesmbut only if the widths of the pages are allowed to grow
proportionally to the size of the graph being laid out. However, if one uses just one
additional page, then the widths of the pages can be kept bounded by a constant.

Both ofthe graph families have the following form. The depth-k K,-cylinder C(k, n)
is the graph whose vertex-set is the union of the k sets

V,, { vi,1, vi,2, ", vi,, }, 1 -< -< k,

and whose edges (a) connect each set V,, into an n-clique, and (b) connect each vertex

vi,j to vertex vi+l,j, 1 _-< < k, 1 _-<j _-< n.
The anomalies of interest appear in the first two parts of the next result. The third

part of the result indicates the failure of the obvious generalization of the first two parts.
PROPOSITION 5.1. (la) Any 1-page layout of C(k, 2) has pagewidth at least k/2.

(1b) There are 2-page layouts of C(k, 2) having pagewidth 2.
(2a) Any 2-page layout ofC(k, 3) haspagewidth at least k/2. (2b) There are 3-page

layouts of C k, 3) having pagewidth 4.
(3) There are 3-page layouts of C(k, 4) having pagewidth 4.

Proof sketch. The fact that C(k, 2) is outerplanar guarantees that it is 1-page
embeddable. The fact that C(k, 3) is planar and subhamiltonian (a hamiltonian cycle
can be traced by going from Vl,1 to Vl,2 to v2,1 to v2,2, and so on until one has reached
/32,n; at that point one goes to /3n,3, thence to Vn_l,3, and so forth, to /31,3) guarantees
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that it is 2-page embeddable. Proving the lower bounds on the pagewidths of the
resulting layouts proceeds by showing that at least half of the constituent n-cliques
must be nested in any minimal-page layout. This is easily verified directly in the case
of C(k, 2): any (not necessarily contiguous) sequence of the form

(or its reversal), where {a, b}= {1,2} precludes an embedding using just one page.
(This verification is a special case of Syslo’s result [23] that every biconnected outer-
planar graph has a unique outerplanar embedding.) In the case of C(k, 3), a direct
verification is a bit more difficult; but the result follows immediately from Whitney’s
proof [27] that every triconnected planar graph has a unique planar embedding.

The existence of the claimed small-pagewidth layouts can be verified by the reader
from the illustrative layouts depicted in Fig. 6. [3

(o)

(b)

(c)

FIG. 6. A small-width layout for (a) C(4,2), (b) C(4,3), (c) C(4, 4).

It would be interesting to know whether or not there exist pagewidth-pagenumber
tradeotts analogous to those of Proposition 5.1 for every number of pages; i.e., can
using one more page decrease pagewidth unboundedly?
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