
CHAPTER 3

A Generative Model — the Preferential

Attachment Scheme

The preferential attachment scheme is often attributed to Herbert Simon. In his
paper [111] of 1955, he gave a model for word distribution using the preferential
attachment scheme and derived Zipf’s law. Namely, the probability of a word
having occurred exactly i times is proportional to 1/i.

The basic setup for the preferential attachment scheme is a simple local growth
rule which leads to a global consequence — a power law distribution. Since this
local growth rule gives preferences to vertices with large degrees, the scheme is often
described by “the rich get richer”.

In this chapter, we shall give a clean and rigorous treatment of the preferential
attachment scheme. Of interest is to determine the exponent of the power law from
the parameters of the local growth rule.

3.1. Basic steps of the preferential attachment scheme

There are two parameters for the preferential attachment model:

• A probability p, where 0 ≤ p ≤ 1.
• An initial graph G0, that we have at time 0.

Usually, G0 is taken to be the graph formed by one vertex having one loop. (We
consider the degree of this vertex to be 1, and in general a loop adds 1 to the degree
of a vertex.) Note, in this model multiple edges and loops are allowed.

We also have two operations we can do on a graph:

• Vertex-step — Add a new vertex v, and add an edge {u, v} from v by
randomly and independently choosing u in proportion to the degree of u
in the current graph.

• Edge-step — Add a new edge {r, s} by independently choosing vertices r
and s with probability proportional to their degrees.

Note that for the edge-step, r and s could be the same vertex. Thus loops could
be created. However, as the graph gets large, the probability of adding a loop can
be well bounded and is quite small.
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56 3. A GENERATIVE MODEL — THE PREFERENTIAL ATTACHMENT SCHEME

The random graph model G(p, G0) is defined as follows:

Begin with the initial graph G0.
For t > 0, at time t, the graph Gt is formed by modifying Gt−1 as follows:

with probability p, take a vertex-step,
otherwise, take an edge-step.

When G0 is the graph consisting of a single loop, we will simplify the notation
and write G(p) = G(p, G0).

3.2. Analyzing the preferential attachment model

To analyze the graph generated by the preferential attachment model G(p), we
let nt denote the number of vertices of G(p) at time t and let et denote the number
of edges of G(p) at time t. We have

et = t + 1.

The number of vertices nt, however, is a sum of t random indicator variables,

nt = 1 +
t∑

i=1

st

where

Pr(sj = 1) = p,

Pr(sj = 0) = 1 − p.

It follows that the expected value E(nt) satisfies

E(nt) = 1 + pt.

To get a handle on the actual value of nt, we use the binomial concentration in-
equality as described in Theorem 2.4. Namely,

Pr(|nt − E(nt)| > a) ≤ e−a2/(2pt+2a/3).

Thus, nt is exponentially concentrated around E(nt).

We are interested in the degree distribution of a graph generated by G(p). Let
mk,t denote the number of vertices of degree k at time t. First we note that

m1,0 = 1, and m0,k = 0.

We wish to derive the recurrence for the expected value E(mk,t). Note that a vertex
of degree k at time t could have come from two cases, either it was a vertex of degree
k at time t − 1 and had no edge added to it, or it was a vertex of degree k − 1
at time t − 1 and the new edge was put in incident to it. Let Ft be the σ-algebra
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associated with the probability space at time t. Thus, for t > 0 and k > 1, we have

E(mk,t|Ft−1) = mk,t−1

(
1 − kp

2t
− (1 − p)2k

2t

)

+mk−1,t−1

( (k − 1)p
2t

+
(1 − p)2(k − 1)

2t

)

= mk,t−1

(
1 − (2 − p)k

2t

)
+ mk−1,t−1

( (2 − p)(k − 1)
2t

)
.(3.1)

If we take the expectation on both sides, we get the following recurrence formula.

E(mk,t) = E(mk,t−1)
(
1 − (2 − p)k

2t

)
+ E(mk−1,t−1)

( (2 − p)(k − 1)
2t

)
.

For t > 0 and k = 1, we have

(3.2) E(m1,t|Ft−1) = m1,t−1

(
1 − (2 − p)

2t

)
+ p.

Thus,

E(m1,t) = E(m1,t−1)
(
1 − (2 − p)

2t

)
+ p.

To solve this recurrence, some existing papers made the (unjustified) assump-
tion E(mk,t) ≈ akt where ak is independent of t. The peril of such innocent-looking
assumptions will be discussed later in this chapter.

Here we will give a rigorous proof that the expected values E(mk,t) follow a
power law when t goes to infinity. To do so, we invoke Lemma 3.1 (to be proved
in the next section) which asserts that for a sequence {at} satisfying the recursive
relation at+1 = (1 − bt

t )at + ct, the limit limt→∞ at

t exists and

lim
t→∞

at

t
=

c

1 + b

provided that limt→∞ bt = b > 0 and limt→∞ ct = c.

We proceed by induction on k to show that limt→∞ E(mk,t)/t has a limit Mk

for each k.

The first case is k = 1. In this case, we apply Lemma 3.1 with bt = b = (2−p)/2
and ct = c = p to deduce that limt→∞ E(m1,t)/t exists and

M1 = lim
t→∞

E(m1,t)
t

=
2p

4 − p
.

Now we assume that limt→∞ E(mk−1,t)/t exists and we apply the lemma again
with bt = b = k(2 − p)/2 and ct = E(mk−1,t−1)(2 − p)(k − 1)/(2t), so in this case
c = Mk−1(2 − p)(k − 1)/2. Lemma 3.1 implies that the limit limt→∞ E(mk,t)/t
exists and is equal to

Mk = Mk−1
(2 − p)(k − 1)
2 + k(2 − p)

= Mk−1
k − 1

k + 2
2−p

.(3.3)
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Thus we can write

Mk =
2p

4 − p

k∏
j=2

j − 1
j + 2

2−p

=
2p

4 − p

Γ(k)Γ(2 + 2
2−p )

Γ(k + 1 + 2
2−p )

(3.4)

where Γ(k) is the Gamma function.

We wish to show that the graph G generated by G(p) is a power law graph
with Mk ∝ k−β (where ∝ means “is proportional to”) for large k. If Mk ∝ k−β,
then

Mk

Mk−1
=

k−β

(k − 1)−β
= (1 − 1

k
)β = 1 − β

k
+ O(

1
k2

).

From (3.3) we have

Mk

Mk−1
=

k − 1
k + 2

2−p

= 1 − 1 + 2
2−p

k + 2
2−p

= 1 − 1 + 2
2−p

k
+ O(

1
k2

)

Thus the exponent β of the power-law graph satisfies

β = 1 +
2

2 − p
= 2 +

p

2 − p
.

Since p is between 0 and 1, the range for β is 2 ≤ β ≤ 3 as illustrated in Figure 1.
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Figure 1. The exponent β = 2 + p
2−p falls into the range [2, 3].

The equation for Mk in (3.4) can be expressed by using the Beta function:

B(a, b) =
∫ 1

0

xa−1(1 − x)b−1dx

=
Γ(a)Γ(b)
Γ(a + b)

.
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Therefore Mk satisfies

Mk =
2p

4 − p

Γ(k)Γ(2 + 2
2−p )

Γ(k + 1 + 2
2−p )

=
p(β − 1)

β

Γ(k)Γ(1 + β)
Γ(k + β)

= p(β − 1)
Γ(k)Γ(β)
Γ(k + β)

= p(β − 1)
∫ 1

0

xk−1(1 − x)β−1dx

= p(β − 1)B(k, β).

Another consequence of the above derivation for Mk is the following equality:

(3.5)
∞∑

k=1

Γ(k)
Γ(k + β)

=
1

Γ(β)(β − 1)
.

One way to prove (3.5) is to use the fact that the expected number of vertices
is 1 + pt. Since

∑∞
k=1 Mk = p, the equation (3.5) immediately follows.

An alternative way to directly prove (3.5) is the following:

∞∑
k=1

Γ(k)
Γ(k + β)

=
1

Γ(β)

∞∑
k=1

Γ(k)Γ(β)
Γ(k + β)

=
1

Γ(β)

∞∑
k=1

B(k, β)

=
1

Γ(β)

∞∑
k=1

∫ 1

0

xk−1(1 − x)β−1dx

=
1

Γ(β)

∫ 1

0

∞∑
k=1

xk−1(1 − x)β−1dx

=
1

Γ(β)

∫ 1

0

(1 − x)β−2dx

=
1

Γ(β)(β − 1)
.

Equation 3.5 is proved.

3.3. A useful lemma for rigorous proofs

Lemma 3.1. Suppose that a sequence {at} satisfies the recurrence relation

at+1 = (1 − bt

t + t1
)at + ct for t ≥ t0.
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Furthermore, suppose limt→∞ bt = b > 0 and limt→∞ ct = c. Then limt→∞ at

t exists
and

lim
t→∞

at

t
=

c

1 + b
.

Proof. Without loss of generality, we can assume t1 = 0 after shifting t by t1.

By rearranging the recurrence relation, we have

at+1

t + 1
− c

1 + b
=

(1 − bt

t )at + ct

t + 1
− c

1 + b

= (
at

t
− c

1 + b
)(

t

t + 1
)(1 − bt

t
) +

t

t + 1
(1 − bt

t
)(

c

1 + b
)

+
ct

t + 1
− c

1 + b

= (
at

t
− c

1 + b
)(1 − 1 + bt

t + 1
) +

ct

t + 1
− (1 + bt)c

(t + 1)(1 + b)

= (
at

t
− c

1 + b
)(1 − 1 + bt

t + 1
) +

(1 + b)ct − (1 + bt)c
(1 + b)(1 + t)

.

Letting st = |at

t − c
1+b |, the triangle inequality now gives :

st+1 ≤ st|1 − 1 + bt

t + 1
| + | (1 + b)ct − (1 + bt)c

(1 + b)(1 + t)
|.

Using the fact that limt→∞ bt = b and limt→∞ ct = c , we have

|(1 + b)ct − (1 + bt)c| < ε

for any fixed ε > 0 provided t is sufficiently large. So, for some T , we have bt > b/2
if t ≥ T . Thus,

st+1 − ε < (st − ε)(1 − 1 + b/2
t

).

Since b > 0, it is not difficult to show that
∏

(1 − (1 + b/2)/t) goes to 0 as
t → ∞. Repeated application of the above inequality gives st < 2ε for large t.
Since ε can be chosen arbitrarily, we have st → 0 as t goes to infinity, as desired.
Therefore we have proved that

lim
t→∞

at

t
=

c

1 + b
.

�

3.4. The peril of heuristics via an example of balls-and-bins

Here we give an example of an incorrect deduction of the power law. This
example of a balls-and-bins problem is a generalized version of Polya’s urn problem
and is quite interesting in its own.

The classical problem of Polya’s urns has the following setup:
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Start with a fixed number of bins each with one ball. At each tick of the clock,
a new ball is placed in one of the bins with the probability of choosing the ith bin
proportional to the number of balls in the ith bin.

Here we consider the balls-and-bins process when the number of bins is not
fixed. We have two parameters, p, a probability between 0 and 1 and a real number
r. We call this model Polya(p, r).

Imagine we have a stream of balls arriving one at a time.
At the very beginning, we place the first ball in a bin.
At time t, with probability p, we place the new ball in a new bin.

Otherwise, we place the new ball in an existing bin, where
we choose a bin with probability proportional to the
rth power of the number of the balls in that bin.

We can modify Polya(p, r) into the following model, denoted by Polya∗(p, r):

We have a stream of balls arriving two at a time.
At the very beginning, we place the first set of two balls in a bin.
At time t, with probability p, we place one new ball in a new bin and the

other ball in an existing bin with probability proportional to the
to the rth power of the number of balls in that bin.
Otherwise, we place each of the two new balls in an existing
bin with probability proportional to the rth power of
the number of balls in that bin.

For the case of r = 1, the model Polya∗(p, 1) is the preferential attachment
model in Section 3.1 if we view the bins as vertices and edges connect the bins the
two balls that arrive at the same time go into. The model Polya∗(p, r) is regarded as
a preferential attachment with feedback. When r > 1, it is preferential attachment
with positive feedback. When r < 1, it is preferential attachment with negative
feedback. This general form of preferential attachment has been examined in a
number of papers [32, 48, 49, 87, 107]. For example, it was shown that for r > 1,
a single bin dominates. In fact, for any k > r/(r − 1), with high probability only
finitely many bins ever reach size k.

In the remainder of this section, we will give a “proof” that for r > 1 in
Polya(p, r), the bin sizes have a power law distribution. The exercise here is to find
what is wrong in this “proof”!

Let nk(t) be the number of bins at time t with k balls. Note that

E(nk(t + 1)) = E(nk(t)(p + (1 − p)(1 − kr

wt
))) + (1 − p)E

(nk−1(t)(k − 1)r

wt

)

where wt denotes
∑

i ni(t)ir. Let us assume that as t gets large E(nk(t)) converges
to a fixed fractions of the total number of balls. In other words, nk(t) ≈ akt. (A
very dangerous assumption indeed!) Furthermore, assume wt converges to wt for
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some constant w. By plugging those assumptions in the above equation, we get

ak(t + 1) = akt(p + (1 − p)(1 − kr

wt
)) + (1 − p)ak−1t

(k − 1)r

wt
.

This implies
ak

ak−1
=

(1 − p)(k − 1)r

w + (1 − p)kr

=
(k − 1)r

w
1−p + kr

≈
(

k − 1
k

)r

for k large. Thus, one might be inclined to conclude that the bin size distribution
is a power law distribution with exponent r if r > 1!

However, the truth (see [32]) is that all but one of the ai’s are zero. A quick
simulation will show that almost all balls go into one bin. In fact, it can be shown
with high probability that all balls go into one bin with the exceptions of the balls
in bins of size 1 and finitely many other balls. This model gives an explanation for
the forming of a monopoly.

What went wrong in the above “proof”? The power law distribution is a
consequence of an unfortunate ratio 0/0. That is exactly why rigorous mathematics
is needed here.

3.5. Scale-free networks

Quite a few recent papers use the term “scale-free networks” to mean graphs
with a power law degree distribution. However, power law and scale-free are very
different concepts. In fact, the term “scale-free” has rarely been properly defined.

Here we intend to clarify the distinction of the two. To discuss “scale-free”,
first we have to answer the question concerning “scale”. What is the appropriate
scale or scales? How should “scale-free” be defined in a natural way?

Two types of scale come to mind — space and time. In fact, scales of space
and time can coexist simultaneously. For example, the call graphs have very similar
shape (the same exponent in the power law distribution) while sampling at different
geographical locations and at different sampling intervals. To simplify the issues,
we separately discuss “scale-free in space” and “scale-free in time”.

3.5.1. Scale-free in space. “Self-similarity” is one of the visible traits that
exist in numerous networks. By comparing the web crawls of [11, 13] and [24, 88]
we see that the same power law appears to govern various subgraphs of the web as
well as the whole. However, while some subgraphs obey the same power law and
appear to be self-similar (i.e., similar to the entire graph), there exist subgraphs
of the web which would not obey the power law (e.g., the subgraph defined by all
nodes with outdegree 50). So, for what kind of subgraphs can “self-similarity” be
considered or even formally defined?
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For the family of recursive trees [94] as rooted trees, the definition comes
naturally. The special subtrees consisting of all descendants of a vertex are similar
to the whole tree.

For a general graph, additional information will be needed to help define the
special subgraphs for which self-similarity will hold. One direction is to consider a
geometric embedding of the graph into some specified metric space. Then we use
the metric to define the special subgraphs. Another direction is to take the graph
as given but to extract a so-called “local graph” from it. The graph metric of the
local graph provides the geometry of the graph. In Chapter 12, we will define the
local graphs and discuss this idea further.

3.5.2. Scale-free in time. It is easier to define scale-free in terms of time than
space perhaps because time is one-dimensional but space is multi-dimensional. The
generative model is a process of growing graphs by adding nodes and edges one at a
time. One way is to divide the time into almost equal units and combine all nodes
born in the same unit time into one super-node. The bigger time unit one chooses,
the fewer nodes the resulting graph has. We say a model is scale-free if it generates
power law graphs with the same exponent regardless of the choice of time scale. In
other words, a generative model is invariant with respect to time in the sense that
if we change the time scale by any given factor, then the original graph and the
scaled graph should satisfy the power law with the same exponent for the degrees.

We can modify the previous model by adding an additional integer parameter
m. Here are the two generalized steps:

• Vertex-m-step — Add a new vertex v, and m new edges {ui, v}, i =
1, . . . , m, by choosing ui with probability proportional to the degree of u
in the current graph.

• Edge-m-step — Add m new edges {ri, si}, i = 1, . . . , m, by choosing ver-
tices ri with probability proportional to the degree of ri, and by choosing
vertices si with probability proportional to the degree of si.

Now we define a graph G(p, m, G0):

Begin with the initial graph G0.
For t > 0, at time t,

with probability p, take a vertex-m-step,
otherwise, take an edge-m-step.

If G0 is taken to be the graph consisting of a vertex with m loops, we write
G(p, m) = G(p, m, G0).

In this model every vertex has degree at least m. Let mk,t be the number of
vertices with degree k at time t. At time t, Gt has exactly e0 + mt edges. We will
denote this by et. Let Ft be the σ-algebra generated by the probability space at
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time t. Thus, for t > 0 and k > m, we have

E(mk,t|Ft−1) = mk,t−1

(
1 − kmp

2et−1
− m(1 − p)2k

2et−1

)

+mk−1,t−1

( (k − 1)mp

2et−1
+

(1 − p)2m(k − 1)
2et−1

)
+ O(

1
t2

)

= mk,t−1

(
1 − (2 − p)mk

2et−1

)
+ mk−1,t−1

( (2 − p)m(k − 1)
2et−1

)
+ O(

1
t2

).(3.6)

Note that the O(1/t2) term above makes it possible to absorb the error terms caused
by loops or multiple edges. Now by taking the expectation on both sides, we get
the following recurrence formula.

E(mk,t) = E(mk,t−1)(1 − (2 − p)mk

2et−1
) + E(mk−1,t−1)(

(2 − p)m(k − 1)
2et−1

) + O(
1
t2

).

In the random graph model G(p, m), we have et = m(t+1). If we substitute et in the
above inequality, all appearances of m are cancelled out. Indeed, we get exactly the
same recurrence formula as we previously had for G(p) in (3.1). Therefore, graphs
generated by G(p, m) have the same power law distribution as graphs generated by
G(p). So we see the exponent β is independent of the scale unit m.

If we compare the figures of the degree distributions of G(p) and G(p, m) in
their logarithmic representation, the figures are almost identical in the sense that
the shape of the curves are straight lines of the same slope. The only difference
is that the line associated with G(p, m) is a slight linear translation to the right.
Mainly, the density of G(p, m) differs from that of G(p) by a factor of m. In the
logarithmic representation, the difference is an additive term of logm, which is
rather small in comparison with n, the number of nodes. Nevertheless, the main
characteristic of the power law is the exponent of the power law as seen from the
same slope in both figures.

3.6. The sharp concentration of preferential attachment scheme

In Section 3.2 we considered the expected degrees for graphs generated by the
preferential attachment scheme and we derived the power law distribution for the
expected degree sequence. However, the expected degrees can be quite different
from the actual degrees of a random graph in hand. Can we give a (probabilistic)
estimate of the difference? The goal of the section is to answer this question.

Since the preferential attachment scheme is an on-line model, the concentration
bound that we intend to give involves nontrivial arguments and is somewhat lengthy.

We will prove the following theorem.

Theorem 3.2. For the preferential attachment model G(p), almost surely the
number of vertices with degree k at time t is

Mkt + O(2
√

k3t ln(t)).
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Recall M1 = 2p
4−p and Mk = 2p

4−p

Γ(k)Γ(1+ 2
2−p )

Γ(k+1+ 2
2−p )

= O(k−(2+ p
2−p )), for k ≥ 2. In

other words, almost surely the graphs generated by G(p) have the power law degree
distribution with the exponent β = 2 + p

2−p .

Proof. We have shown that

lim
t→∞

E(mk,t)
t

= Mk,

where Mk is defined recursively in (3.3). It is sufficient to show mk,t is concentrated
on the expected value.

We shall prove the following claim.

Claim: For any fixed k ≥ 1 and c > 0, with probability at least 1−2(t+1)k−1e−c2
,

we have

|mk,t − Mk(t + 1)| ≤ 2kc
√

t.

To see that the claim implies Theorem 3.2, we choose c =
√

k ln t. Note that

2(t + 1)k−1e−c2
= 2(t + 1)k−1t−k = o(1).

So, from the claim, with probability 1 − o(1), we have

|mk,t − Mk(t + 1)| ≤ 2
√

k3t ln t,

as desired.

It remains to prove the claim.

Proof of claim: We shall prove it by induction on k.

The base case of k = 1:

For k = 1, from equation (3.2), we have

E(m1,t − M1(t + 1)|Ft−1) = E(m1,t|Ft−1) − M1(t + 1)

= m1,t−1(1 − 2 − p

2t
) + p − M1t − M1

= (m1,t−1 − M1t)(1 − 2 − p

2t
) + p − M1

2 − p

2
− M1

= (m1,t−1 − M1t)(1 − 2 − p

2t
)

since M1 = 2p
4−p and p − M1

2−p
2 − M1 = 0.

Let X1,t = m1,t−M1(t+1)
Q

t
j=1(1− 2−p

2j )
. We consider the martingale 1 = X1,0, X1,1, . . . , X1,t.
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We have

X1,t − X1,t−1 =
m1,t − M1(t + 1)∏t

j=1(1 − 2−p
2j )

− m1,t−1 − M1t∏t−1
j=1(1 − 2−p

2j )

=
1∏t

j=1(1 − 2−p
2j )

[(m1,t − M1(t + 1)) − (m1,t−1 − M1t)(1 − 2 − p

2t
)]

=
1∏t

j=1(1 − 2−p
2j )

[(m1,t − m1,t−1) +
2 − p

2t
(m1,t−1 − M1t) − M1].

We note that |m1,t − m1,t−1| ≤ 2, m1,t−1 ≤ t, and M1 = 2p
4−p < 1. We have

(3.7) |X1,t − X1,t−1| ≤ 4∏t
j=1(1 − 2−p

2j )
.

Since |m1,t − m1,t−1| ≤ 2, we have

Var(m1,t|Ft−1) ≤ E((m1,t − m1,t−1)2|Ft−1)
≤ 4.

Therefore, we have the following upper bound for Var(X1,t|Ft−1).

Var(X1,t|Ft−1) = Var
(
(m1,t − M1(t + 1))

1∏t
j=1(1 − 2−p

2j )

∣∣Ft−1

)

=
1∏t

j=1(1 − 2−p
2j )2

Var(m1,t − M1(t + 1)|Ft−1)

=
1∏t

j=1(1 − 2−p
2j )2

Var(m1,t|Ft−1)

≤ 4∏t
j=1(1 − 2−p

2j )2
.(3.8)

We apply Theorem 2.22 to the martingale {X1,t} with σ2
i = 4Qi

j=1(1− 2−p
2j )2

,

M = 4Q
t
j=1(1− 2−p

2j )
and ai = 0. We have

Pr(X1,t ≥ E(X1,t) + λ) ≤ e
− λ2

2(
Pt

i=1 σ2
i
+Mλ/3) .

Here E(X1,t) = X1,0 = 1. We will use the following approximation.

i∏
j=1

(1 − 2 − p

2j
) =

Γ(i + p
2 )

Γ(i + 1)Γ(p
2 )

=
( 1
Γ(p

2 )
+ O

(1
i

))
i−1+p/2.
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For any c > 0, we choose λ = 2c
√

tQt
j=1(1− 2−p

2j )
≈ 2Γ(p

2 )ct(3−p)/2. We have

t∑
i=1

σ2
i =

t∑
i=1

4∏i
j=1(1 − 2−p

2j )2

≈
t∑

i=1

4Γ2(
p

2
)i2−p

≈ 4Γ2(p
2 )

3 − p
t3−p

< 2Γ2(
p

2
)t3−p.

We note that

Mλ/3 ≈ 4
3
Γ2(

p

2
)ct5/2−p < 2Γ2(

p

2
)t3−p

provided c <
√

t. We have

Pr(X1,t ≥ 1 + λ) ≤ e
− λ2

2(
Pt

i=1 σ2
i
+Mλ/3)

< e
− 4Γ2( p

2 )c2t3−p

(4+o(1))Γ2( p
2 )t3−p

≈ e−c2
.

Since 1 is much smaller than λ, we can replace 1+λ by λ without loss of generality.
Thus, with probability at least 1 − e−c2

, we have

X1,t ≤ λ.

Similarly, with probability at least 1 − e−c2
, we have

(3.9) m1,t − M1(t + 1) ≤ 2c
√

t.

We remark that the inequality (3.9) holds for any c > 0. In fact, it is trivial when
c >

√
t since |m1,t − M1(t + 1)| ≤ 2t always holds.

Similarly, by applying Theorem 2.26 to the martingale, the following lower
bound

m1,t − M1(t + 1) ≥ −2c
√

t

holds with probability at least 1 − e−c2
.

We have proved the claim for k = 1.

The inductive step:

Suppose the claim holds for k − 1. For k, we define

Xk,t =
mk,t − Mk(t + 1) − 2(k − 1)c

√
t∏t

j=1(1 − (2−p)k
2j )

.
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we have

E(mk,t − Mk(t + 1) − 2(k − 1)c
√

t|Ft−1)

= E(mk,t|Ft−1) − Mk(t + 1) − 2(k − 1)c
√

t

= mk,t−1

(
1 − (2 − p)k

2t

)
+ mk−1,t−1

( (2 − p)(k − 1)
2t

)
−Mk(t + 1) − 2(k − 1)c

√
t.

By the induction hypothesis, with probability at least 1− 2tk−2e−c2
, we have

|mk−1,t−1 − Mk−1t| ≤ 2(k − 1)c
√

t − 1.

By using this estimate, with probability at least 1− 2tk−2e−c2
, we have

E(mk,t−Mk(t+1)−2(k−1)c
√

t|Ft−1) ≤ (1− (2 − p)k
2t

)(mk,t−1−Mkt−2(k−1)c
√

t − 1)

by using the fact that Mk ≤ Mk−1 as seen in (3.3).

Therefore, 0 = Xk,0, Xk,1, . . . , Xk,t forms a submartingale with failure proba-
bility at most 2tk−2e−c2

.

Similar to inequalities (3.7) and (3.8), it can be easily shown that

|Xk,t − Xk,t−1| ≤ 4∏t
j=1(1 − (2−p)k

2j )

and

Var(Xk,t|Ft−1) ≤ 4∏t
j=1(1 − (2−p)k

2j )2
.

We apply Theorem 2.39 on the submartingale with σ2
i = 4

Q
i
j=1(1− (2−p)k

2j )2
, M =

4Q
t
j=1(1− 2−p

2j )
and ai = 0. We have

Pr(Xk,t ≥ E(Xk,t) + λ) ≤ e
− λ2

2(
Pt

i=1 σ2
i
+Mλ/3) + Pr(B),

where Pr(B) ≤ tk−1e−c2
by the induction hypothesis.

Here E(Xk,t) = Xk,0 = 0. We will use the following approximation.

i∏
j=1

(1 − (2 − p)k
2j

) =
Γ(i + 1 − (2−p)k

2 )

Γ(i + 1)Γ(1 − (2−p)k
2 )

=
( 1

Γ(1 − (2−p)k
2 )

+ O
(1
i

))
i−k(2−p)/2.
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For any c > 0, we choose λ = 2c
√

t
Qt

j=1(1− (2−p)k
2j )

≈ 2Γ(1 − (2−p)k
2 )ct1/2+k(2−p)/2.

We have
t∑

i=1

σ2
i ≤

t∑
i=1

4∏i
j=1(1 − (2−p)k

2j )2

≈
t∑

i=1

4Γ2(1 − (2 − p)k
2

)ik(2−p)

≈ 4Γ2(1 − (2−p)k
2 )

1 + (2 − p)k
t1+k(2−p)

< 2Γ2(1 − (2 − p)k
2

)t1+k(2−p).

We note that

Mλ/3 ≈ 4
3
Γ2(1 − (2 − p)k

2
)ct

1
2+(2−p)k < 2Γ2(1 − (2 − p)k

2
)t1+(2−p)k

as long as c <
√

t. We have

Pr(Xk,t ≥ λ) ≤ e
− λ2

2(
Pt

i=1 σ2
i
+Mλ/3) + Pr(B)

< e
− 4Γ2(1− (2−p)k

2 )c2t1+(2−p)k

(4+o(1))Γ2(1− (2−p)k
2 )t1+(2−p)k + Pr(B)

< e−c2
+ tk−1e−c2

≤ (t + 1)k−1e−c2
.

With probability at least 1 − (t + 1)k−1e−c2
, we have

Xk,t ≤ λ.

Equivalently, with probability at least 1− (t + 1)k−1e−c2
, we have

(3.10) mk,t − Mk(t + 1) ≤ 2kc
√

t.

We remark that the inequality (3.10) holds for any c > 0. In fact, it is trivial when
c >

√
t since |mk,t − Mk(t + 1)| ≤ 2kt always holds.

To obtain the lower bound, we consider

X ′
k,t =

mk,t − Mk(t + 1) + 2(k − 1)c
√

t∏t
j=1(1 − (2−p)k

2j )
.

It can be easily shown that X ′
k,t is nearly a supermartingale. Similarly, by applying

Theorem 2.42 to X ′
k,t, the following lower bound

mk,t − Mk(t + 1) ≥ −2kc
√

t

holds with probability at least 1 − (t + 1)k−1e−c2
.

This completes the induction. The proof of Theorem 3.2 is complete. �

For completeness, we here state the corresponding theorem for G(p, m, G0).
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Theorem 3.3. For the preferential attachment model G(p, m, G0), almost surely
the number of vertices with degree k at time t is

Mkt + mk,0 + O(2m
√

(k + m − 1)3t ln(t)).

Recall Mm = 2p
4−p and Mk = 2p

4−p

Γ(k)Γ(1+ 2
2−p )

Γ(k+1+ 2
2−p )

= O(k−(2+ p
2−p )), for k ≥ m + 1. In

other words, almost surely the graphs generated by G(p, m, G0) have the power law
degree distribution with the exponent β = 2 + p

2−p .

3.7. Models for directed graphs

Many real-world graphs are directed graphs. For example, the WWW-graph
has edges each of which represents a link from one webpage to another. There are
vertices with large indegrees but relatively small outdegrees such as Yahoo, CNN
or USA Today. Such vertices are often called authorities [84]. There are also ver-
tices, called hubs, with large outdegrees but relatively small indegrees. For directed
graphs, we can have quite different distributions for indegrees and outdegrees. For
example, the indegree sequence of the WWW graph follows the power law distribu-
tion with the exponent β about 2.1 while the outdegree sequence follows a different
power law with exponent β about 2.7.

In this section, we will consider a preferential attachment model that can gener-
ate a directed graph with power law indegree distributon and power law outdegree
distribution. Furthermore, the exponents for the power law distributions can be
specified to be different values.

To generate such a directed graph, we have three parameters for the preferential
attachment model:

• Two given probabilities p1, p2, satisfying 0 ≤ p1, p2 ≤ p1 + p2 ≤ 1.
• An initial graph G0 at time 0.

We also have three operations:

• Source-vertex-step — Add a new vertex v, and add a directed edge (v, u)
from v by randomly and independently choosing u in proportion to the
indegree of u in the current graph.

• Sink-vertex-step — Add a new vertex v, and add a directed edge (u, v) to v
by randomly and independently choosing u in proportion to the outdegree
of u in the current graph.

• Edge-step — Add a new edge (r, s) by independently choosing vertices r
and s with probability proportional to its outdegree (respectively inde-
gree).

The random graph model D0(p1, p2, G0) is defined as follows:

Begin with the initial graph G0.
For t > 0, at time t, the graph Gt is formed by modifying Gt−1 as follows:

with probability p1, take a source-vertex-step,
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with probability p2, take a sink-vertex-step,
otherwise, take an edge-step.

This simple model generates a power law graph with different exponents (as
functions of p1 and p2) for indegree and outdegree distributions. We remark that
the vertices with indegree zero (i.e., source vertices) will always have zero indegree.
Conversely, the vertices with outdegree zero (i.e., sink vertices) will always have
outdegree zero. Except for the vertices in G0, the rest of the vertices are partitioned
into two groups — source vertices and sink vertices. This model might not be
feasible for modeling most realistic networks.

We here consider a modified preferential attachment scheme with an additional
parameter α ≥ 0, defined as follows:

α-preferential attachment scheme (or α-scheme, in short):
A vertex u is chosen for the tail (or head) of a new edge with probability proportional
to its in-weight (or out-weight). The in-weight of u is defined to be the sum of the
indegree of u and α, while the out-weight of u is the sum of the outdegree of u and
α.

The random graph model D(p1, p2, α, G0) is defined as follows:

Begin with the initial graph G0.
For t > 0, the graph Gt is formed by modifying Gt−1 as follows:

with probability p1, take a source-vertex-step using the α-scheme,
with probability p2, take a sink-vertex-step using the α-scheme,
otherwise, take an edge-step using the α-scheme.

We note that an alternative model is to add loops to a new vertex in each
step. It is not hard to see that adding a loop is equivalent to the 1-preferential
attachment scheme. In fact, the α-preferential attachment scheme can be viewed
as adding α loops. When G0 is the graph consisting of a single vertex, we simplify
the notation and write G(p1, p2, α) = G(p1, p2, α, G0).

The number of edges of G(p1, p2, α) at time t is exactly t, while the total
weight at time t is t+αnt. The number of vertices nt at time t follows the binomial
distribution. The expected value E(nt) satisfies

E(nt) = 1 + (p1 + p2)t.

To deal with the actual value nt, we use the binomial concentration inequality as
described in Theorem 2.4. Namely,

Pr(|nt − E(nt)| > a) ≤ e−a2/(2pt+2a/3).

Thus, nt is exponentially concentrated around E(nt).

Let min
k,t denote the number of vertices of in-degree k at time t. We note that

min
0,k = 0.
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We wish to derive a recurrence formula for the expected value E(min
k,t). A vertex

of indegree k at time t could have come from two cases, either it was a vertex of
degree k at time t − 1 and had no edge added directed to it, or it was a vertex of
indegree k − 1 at time t − 1 and the new edge was directed to it.

Let Ft denote the σ-algebra generated by the probability space at time t. For
t > 0 and k > 1, we have

E(min
k,t|Ft−1) = min

k,t−1(1 − (k + α)p1

t − 1 + αnt
− (1 − p1 − p2)(k + α)

t − 1 + αnt
)

+min
k−1,t−1(

(k − 1 + α)p1

t − 1 + αnt
+

(1 − p1 − p2)(k − 1 + α)
t − 1 + αnt

)

= min
k,t−1(1 − (1 − p2)(k + α)

t − 1 + αnt
) + min

k−1,t−1(
(1 − p2)(k − 1 + α)

t − 1 + αnt
).

If we take the expectation on both sides and apply the estimation nt ≈ (p1 +
p2)t, we obtain the following recurrence formula.

E(min
k,t) ≈ E(min

k,t−1)(1 − (1 − p2)(k + α)
t(1 + (p1 + p2)α)

) + E(min
k−1,t−1)(

(1 − p2)(k − 1 + α)
t(1 + (p1 + p2)α

).

For t > 0 and k = 0, 1, we have

E(min
1,t|Ft−1) = min

1,t−1(1 − (1 − p2)(1 + α)
t − 1 + αnt

) + min
0,t−1(

(1 − p2)α
t − 1 + αnt

) + p2,

E(min
0,t|Ft−1) = min

0,t−1(1 − (1 − p2)α
t − 1 + αnt

) + p1.

Thus,

E(min
1,t) ≈ E(min

1,t−1)(1 − (1 − p2)(1 + α)
t(1 + (p1 + p2)α)

) + E(min
0,t−1)

(1 − p2)α
t(1 + (p1 + p2)α)

+ p2,

E(min
0,t) ≈ E(min

0,t−1)(1 − (1 − p2)α
t(1 + (p1 + p2)α)

) + p1.

Here these asymptotic equalities come from the fact that nt ≈ (p1 + p2)t.

We proceed by induction on k to show that limt→∞ E(min
k,t)/t has a limit M in

k

for each k.

The first case is k = 0. In this case, we apply Lemma 3.1 with bt = b =
(1−p2)α/(1+(p1 +p2)α) and ct = c = p2 to deduce that limt→∞ E(min

0,t)/t = M in
0

exists. We have

M in
0 =

c

1 + b

=
p2

1 + (1−p2)α
(1+(p1+p2)α)

=
p2(1 + (p1 + p2)α)

1 + (1 + p1)α
.(3.11)
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For k = 1, we use Lemma 3.1 with bt = b = (1 − p2)(1 + α)/(1 + (p1 + p2)α))
and ct = E(min

0,t−1)
(1−p2)α

t(1+(p1+p2)α) + p1. We have

c = lim
t→∞ ct = M in

0

(1 − p2)α
1 + (p1 + p2)α

+ p1.

It implies that limt→∞ E(min
0,t)/t = M in

1 exists. We have

M in
1 =

c

1 + b

=
M in

0
(1−p2)α

1+(1+p1)α
+ p1

1 + (1−p2)(1+α)
(1+(p1+p2)α)

=
p1 + (p1 + p2 + p2

1 − p2
2)α

2 − p2 + (1 + p1)α
.(3.12)

For k > 1, we assume that limt→∞ E(min
k−1,t)/t = M in

k−1 exists and we apply

the lemma again with bt = b = (1−p2)(k+α)
(1+(p1+p2)α) and ct = E(min

k−1,t−1)
(1−p2)(k−1+α)
t(1+(p1+p2)α) ,

so c = M in
k−1

(1−p2)(k−1+α)
(1+(p1+p2)α) . Lemma 3.1 implies that the limit limt→∞ E(min

k,t)/t =
M in

k exists and is equal to

M in
k =

c

1 + b

= M in
k−1

(1−p2)(k−1+α)
1+(1+p1)α

1 + (1−p2)(k+α)
(1+(p1+p2)α)

= M in
k−1

k − 1 + α

k + α + 1+(p1+p2)α
1−p2

.(3.13)

Thus we can write

M in
k = M in

1

k∏
j=2

j − 1 + α

j + α + 1+(p1+p2)α
1−p2

= M in
1

Γ(k + α)Γ(2 + α + 1+(p1+p2)α
1−p2

)

Γ(1 + α)Γ(k + 1 + α + 1+(p1+p2)α
1−p2

)

≈ M in
1

Γ(2 + α + 1+(p1+p2)α
1−p2

)

Γ(1 + α)
k

1+
1+(p1+p2)α

1−p2

where Γ(k) is the Gamma function.

Thus we have a power law graph for the indegree sequence with

βin = 1 +
1 + (p1 + p2)α

1 − p2
= 2 +

p2 + (p1 + p2)α
1 − p2

.
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Let mout(t, k) be the number of vertices with outdegree k at time t. Similarly

we can show limt→∞
E(mout

t,k )

t exists. We denote it by Mout
k . We have

Mout
0 =

p2(1 + (p1 + p2)α)
1 + (1 + p2)α

,(3.14)

Mout
1 =

p2 + (p1 + p2 + p2
2 − p2

1)α
2 − p1 + (1 + p2)α

.(3.15)

For k > 1, we have

Mout
k = Mout

1

Γ(k + α)Γ(2 + α + 1+(p1+p2)α
1−p1

)

Γ(1 + α)Γ(k + 1 + α + 1+(p1+p2)α
1−p1

)
(3.16)

≈ Mout
1

Γ(2 + α + 1+(p1+p2)α
1−p1

)

Γ(1 + α)
k1+

1+(p1+p2)α
1−p1 .

The exponent βout for the outdegree distribution is

βout = 1 +
1 + (p1 + p2)α

1 − p1
= 2 +

p1 + (p1 + p2)α
1 − p1

.

Similar to Section 3.6, we can prove a sharp concentration result for the indegree
and outdegree distributions. For completeness, we state the following theorem for
the directed preferential attachment model.

Theorem 3.4. For the preferential attachment model G(p1, p2, α), we have

(1) Almost surely the number of vertices with indegree k at time t is

M in
k t + O(2

√
k3t ln(t)),

where M in
k is defined in equation (3.11), (3.12), and (3.16).

(2) Almost surely the number of vertices with outdegree k at time t is

Mout
k t + O(2

√
k3t ln(t)),

where Mout
k is defined in equation (3.14), (3.15), and (3.16).

(3) Almost surely it is a power law directed graph with the exponent βin =
2 + p2+(p1+p2)α

1−p2
for the indegree distribution and the exponent βout =

2 + p1+(p1+p2)α
1−p1

for the outdegree distribution.

The exponents βin and βout have special meanings. It is not difficult to see
that both values are greater than 2. It can be observed that p2 + (p1 + p2)α is the
expected increment for the indegree of the new vertex while 1 − p2 is the expected
increment for the indegrees of the current graphs. Hence, βin − 2 is the ratio of
the increment of edges to the new vertex and the increment of edges to the current
graph. There is a similar interpretation for βout − 2 as well.

In this chapter, we focused on the rigorous analysis of the preferential attach-
ment schemes. Further analysis on the strengthened model allowing deletion will
be given in Chapter 10. Another local growth model with emphasis on duplication
will be examined in Chapter 4.




